
 

Software Engineering – Concepts and Implementations 

 

 

Course Designer and Acquisition Editor 

 

 

Centre for Information Technology and Engineering 

Manonmaniam Sundaranar University 

Tirunelveli 



 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Software Engineering – Concepts 

and Implementation  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 
 

 

CONTENTS 
 
 
Lecture 1 THE PRODUCT 1 

 Software  
 Software Characteristics 
 Software Components 
 Software Applications 
 Software A Crisis on the Horizon 
 Software myths 

 
Lecture 2 PROCESS 13 

 Software Engineering – A Layered Technology 
 Process, Methods, and Tools 
 A Generic view of Software Engineering 
 The Software Process 
 Software process models 
 Linear Sequential Models 
 The Incremental model 
 The formal methods Model 

 
Lecture 3 PROJECT MANAGEMENT CONCEPT 26 

 The management Spectrum 
 People 
 The Problem 
 Problem decomposition 
 The process 
 Process Decomposition 
 The Project 

 
Lecture 4 SOFTWARE PROJECT PLANNING – I  40 

 Observations on Estimating 
 Project Planning Objectives 
 Software Scope 
 Obtaining Information Necessary for Scope 
 A scoping Example 
 Resources 
 Human Resources 
 Reusable Software Resources 
 Environmental Resources 

 



 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 

Lecture 5 SOFTWARE PROJECT PLANNING – II 50 

 Decomposition Techniques 
 Problem Based Estimations 
 An example of LOC Based Estimation 

 
Lecture 6 RISK MANAGEMENT 58 

 Reactive Vs. Proactive Risk Strategies 
 Software Risks 
 Risk Identification 
 Risk projection 
 Risk  Mitigation, Monitoring and Management 
 Safety Risk and Hazards 

 
Lecture 7 PROJECT SHCEDULING AND TRACKING – I 74 

 Comments on “Lateness” 
 Basic Principles 
 The Relationship Between People and Effort 
 An Empirical Relationship 
 Effort Distribution 
 Defining a Task Set for the Software Project 
 Degree of Rigor 
 Defining Adaption Criteria 
 Computing a Task Set Selector Value 
 Interpreting the TSS value and Selecting the Task Set 

 
Lecture 8 PROJECT SCHUDELING AND TRACKING – II 85 

 Selecting Software Engineering Tasks 
 Refinement of major Tasks 
 Defining a Tasks Network 
 Scheduling 
 Timeline Charts 
 Tracking the Schedule 
 The Project Plan 

 
Lecture 9 SOFTWARE QUALITY ASSURANCE – I 97 

 Quality concept 
 The Quality Movement 
 Software Quality Assurance 
 Software Reviews 

 
Lecture 10 SOFTWARE QUALITY ASSURACNE – II 108 

 Formal Techniques Reviews 
 Formal Approaches to SQA 



 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 
 

 Statistical Quality Assurance 
 Software Reliability 
 The SQA Plan 
 The ISO 9000 Quality Standards 

 
Lecture 11 SOFTWARE CONFIGURATION MANAGEMENT 123 

 Software Configuration management 
 The SCM process 
 Identification of Objects in the Software Configuration 
 Version Control  
 Change Control 
 Configuration Audit 
 Status Reporting  
 SCM Standards 

 
Lecture 12 SYSTEM ENGINEERING – I 139 

 The System Engineering Hierarchy 
 System Modeling 
 Information Engineering : An Overview 
 Product Engineering :  An overview 
 Information Engineering  

 
Lecture 13 SYSTEM ENGINEERING – II 150 

 Information Strategy Planning 
 Enterprise modeling 
 ‘Business Level Data Modeling 
 Business Area Analysis 
 Information flow modeling 

 
Lecture 14 SYSTEM ENGINEERING  - III 161 

 Product Engineering 
 Modeling The System Architecture 
 System modeling and Simulation 
 System Specification 

 
Lecture 15 ANALYSIS MODELING – I 175 

 The Elements of the Analysis model 
 Data Modeling 
 Data Objects, Attributes and Relationships 
 Cardinality and modality 
 Entity Relationship Diagrams 
 Function modeling and information flow 



 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 

 Data Flow Diagrams 
 Extensions for Real Time Systems 
 Ward and Mellor Extension 
 Hately and Pirbhai Extension 

 
Lecture 16 ANALYSIS MODELING –II 192 

 Behavioral Modeling 
 The mechanic of Structured Analysis 
 Creating an Entity Relationship Diagram 
 Creating a Data flow model 
 Creating a Control flow Model 
 The Control Specification 
 The Process Specification 

 
 
Lecture 17 ANALYSIS MODELING – III 207 

 Data Dictionary 
 An Overview of other Classical Analysis methods 
 Data Structured System Development 
 Jackson System Development 
 SADT 

 
Lecture 18 DESIGN CONCEPTS AND PRINCIPLES – I 214 

 Software Design and Software Engineering 
 The Design Process 
 Design Principle 
 Design Concepts 

 
Lecture 19 DESIGN CONCEPTS AND PRINCIPLES – II 230 

 Functional independence 
 Design Heuristics for Effective modularity 
 The Design model 
 Design Documentation 

 
Lecture 20 DESIGN METHODS – I 241 

 Architectural design 
 The Architectural Design process 
 Transform Mapping 
 Transaction Mapping 
 Sign Postprocessing 

 
Lecture 21 DISCUSSION 
 



 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 
 

Lecture 22 DESIGN METHODS – II 262 

 Architectural Design optimization 
 Interface Design 
 Human Computer interface Design 
 General Interaction 
 Procedural Design 

 
Lecture 23 DISCUSSION 
 
Lecture 24 DESIGN FOR REAL TIME-I 284 

 Real Time Systems 
 Integration and performance Issues 
 Interrupt handling 
 Real time databases 
 Real Time Operating Systems 
 Real Time Languages 
 Task Synchronization and Communications 

 
Lecture 25 DESIGN FOR REAL TIME – II 293 

 Analysis and Simulation of Real Time  Systems 
 Real Time Design 

 
Syllabus 306 

 
 



The Product 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 1 

 

 

Lecture 1 
 
 
 
 
 

The Product 
 
 
 
 
 

 

Objectives 

In this lecture you will 
learn the following 

 
 Software characteristics 

 Software components  

 Software applications 

 Software myths 

 
  
 

 
 
 
 
 
 
 
 
 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University  2 

 
 
 
 
 
 
 
 
 

Coverage Plan 
 
 
 
 
 

Lecture 1 
 
1.1 Snap shot the evolving role of software 

1.2 Software  

1.3 Software Characteristics 

1.4 Software Components 

1.5 Software Applications 

1.6 Software: a crisis on the horizon 

1.7 Software Myths 

1.8  Short Summary 

1.9  Brain Storm 
 
 



The Product 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 3 

1.1 Snap Shot   
 
Today software takes on a  dual role. It is a product and at the same time the vehicle for deliveritn a 
product. As a product it delivers the computing potential embodied by computer hardware. Whether it 
resides within a cellular phone or operates inside a mainframe computer software is an information 
transformer producing, managing, acquiring modifying , displaying or transmitting information that can 
be as simple as a signle bit or as complex as a multimedia simulation. As the vehicle used to deliver the 
product softwre acts as the basis for the control of the computer (operation sytems) the communication of 
inforamtion (networks) and the creation and control of other programs (software tools and environments). 
 
Software delivers what many believe will be the most importatnt prodcut of the twenty-first century 
informatiion. Software transfroms personal data(e.g., an individual financial transactions) so that the data 
can be more useful in a local context it manages business information to enhance competiveness it 
provides a gateway to world wide inforamtion networks(e.g., the Internet) ; and it provides the means for 
acquirring information in all of its forms. 
 

1.2 Software  
 
In 1970s less than 1 percent of the public could have intelligently d4escribed what “computer software “ 
meant. Today most professionals and many member of the public at large feel that they understand 
software. But do they? 
 
A textbook description of software might take the following form: Software is (1) instructions (computer 
programs) that when executed provide desired function and performance (2) data structures that enable 
the programs to adequately manipulate information and (3) documents that describe the operation and 
use of the programs. There is no question that other more complete definitions could be offered. But we 
need more than a formal definition. 
 

1.3. Software Characteristics 
 
To gain an understanding of software (and ultimately an understanding of software engineering) it is 
important to examine the characteristic of software that make it different from other things that human 
beings build. When hardware is built the human creative process(analysis, design, construction) is 
ultimately translated into a physical form. If we build a new computer our initial sketches formal design 
drawings and bread boarded prototypes evolve into a physical product (VLSI chips, circuit boards, power 
supplies etc). Software is a logical rather than a physical system element. Therefore software has 
characteristic that differ considerably from those of hardware. 
 
Software is developed or engineered, it is not manufactured in the classical sense. Although some similarities exist 
between software development and hardware manufacture the two activities are fundamentally different. 
In both activities high quality is achieved through good design but the manufacturing phase for hardware 
can introduce quality problems that are nonexistent (or easily corrected) for software. Both activities 
depend on people but the relationship between people applied and work accomplished is entirely 
different.  
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Software doesn’t wear out. Figure 1.1 depicts failure rate as a function of time for hardware.  The 
relationship, often called the “bathtub curve”, indicates that hardware exhibits relatively high failure rates 
early in its life (these failures are often attributable to design or manufacturing defects) defects are 
corrected, and the failure rate drops to a steady state level (hopeful, quite low)  for some period of time.  
As time passes, however, the failure rate rises again as hardware components suffer from the cumulative 
affects of dust, vibration, abuse, temperature extremes, and many other environmental maladies.  Stated 
simply, the hardware begins to wear out. 
Figure 1.1 Failure curve for hardware 

 
Software is not susceptible to the environmental maladies that cause hardware to wear out.  In theory, 
therefore, the failure rate curve for software should take the form shown Figure 1.2 Undiscovered defects 
will cause high failure rates early in the life of a program.   However, these are corrected (hopefully 
without introducing other) and the curve flattens as shown as shown Figure 1.2 is a gross over 
simplification of actual failure models for software. However the implication is clear software doesn’t 
wear out. But it does deteriorate! 
This seeming contradiction can best be explained by considering Figure 1.3 During its life software will 
undergo change (maintenance) As changes are made it is likely that some new defects will be introduced, 
causing the failure rate curve to spike as shown in Figure 1.3 Before the curve can return to the originally 
steady state  failure rate, another change is requested causing the curve to spike again Slowly the 
minimum failure rate level begins to rise the software is deteriorating due to change. 
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Figure 1.2 Failure curve for software (ideallized) 
 

 
 
Figure 1.3 Actual failure curve for software 
Most software is custom–built rather than being assembled from existing components. Consider the manner in 
which the control hardware for a microprocessor based product is designed and built. The design 
engineer draws a simple schematic of the digital circuitry does some fundamental analysis to ensure that 
proper function will be achieved and then refers to a catalog of digital components . Each integrated 
circuit (often called an “IC” or a “Chip”) has a part number a defined validated function a well –defined 
interface and a standard set of integration guidelines. After each component is selected it can be ordered 
off the shelf. 
 
Sadly, software designers are not afforded the luxury described above. With few exceptions there are no 
catalogs of software components. I t is possible to order off- the –shelf software, but only as a complete 
unit not as components that can be reassembled into new programs. Although much has been written 
about “software reusability we are only beginning to see successful implementations of the concept. 
 

1.4 Software Components 
 
As an engineering discipline evolves a collection of standard design components is created. Standard 
screws and off-the –shelf integrated circuits are only two of thousands of standard components that are 
used by mechanical and electrical engineers as they design new systems. The reusable components have 
been created so that the engineer can concentrate on the truly innovative elements of a design (i.e., the 
parts of the design that represent something new). In the hardware world, component reuse is a natural 
part of the engineering process. In the software world it is something that has yet to be achieved on a 
broad scale. 
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Reusability is an important characteristic of a high quality software component.  A software component 
should be designed and implemented so that it can be reused in many different programs. In the 1960s we 
built scientific subroutine libraries that were reusable in a broad array of engineering and scientific 
applications. These subroutine libraries reused well-defined algorithms in an effective manner, but had a 
limited domain of application. Today we have extended our view of reuse components encapsulate both 
data and the processing that is applied to the data enabling the software engineer to create new 
application from reusable parts. For example today’s interactive interfaces are built using reusable 
components that enable the creation of graphics windows pull-down menus and a wide variety of 
interaction mechanism. The data structures and processing detail required to build the interface are 
contained within a library of reusable components for interface construction. 
 
Software components are built using a programming language that has a limited vocabulary an explicitly 
defined grammar and well formed rules of syntax and semantics. At the lowest level the language mirrors 
the instruction set of the hardware. At mid-level programming languages such as Ada 95, C or Smalltalk 
are used to create a procedural description of the program. A the highest level the language uses graphical 
icons or other symbology to represent the requirements for a solution. Executable instructions are 
automatically generated. 
 
Machine level language symbolic representation of the CPU instruction set. When a good software 
developer produces a maintainable well documented program machine level  language can made 
extremely  efficient use of memory and “optimize” program execution speed. When a program is poorly 
designed and has little documentation machine language is a nightmare. 
 
Mid-level languages allow the software developer and the program to be machine-independent. When a 
more sophisticated translator is used, the vocabulary, grammar , syntax and semantics of a mid-level 
language can be such more sophisticated that machine-level languages. In fact mid-level language 
compilers ad interpreters produce machine-level language as output. 
 
Although hundreds of programming languages are in use today fewer than ten mid-level programming  
languages are widely used in the industry . Languages such as COBOL and FORTRAN remain in 
widespread use more than 30 years after their introduction. More modern programming languages such 
as Ada95, C, C++, Eiffel, Java and Smalltalk have each gained an enthusiastic following. 
 
Machine code assembly languages and mid-level programming languages are often referred to as the first 
three generation of computer languages . With any of these languages the programmer must be concerned 
both with the specification of the information structure and the control of the program itself. Hence 
languages in the first three generation are termed procedural languages. 
 
Fourth generation languages also called nonprocedural languages move the software developer even 
further from the computer hardware. Rather than requiring the developer to specify procedural detail, the 
nonprocedural language implies a program by “ specifying the desired result rather than specifying action 
required to achieve that result” [COB85]. Support software translates the specification of result into a 
machine executable program. 
 

 



The Product 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 7 

1.5 Software Applications 
 
Software may be applied in any situation for which a pre-specified set of procedural steps(i.e., an 
algorithm) has been defined (notable exceptions to this rule are expert systems and artificial neural 
network software). Information content and determinacy are important factors in determining the nature 
of a software application. Content refers to the meaning and form of incoming an outgoing information . 
For example many business application make use of highly structured input data and produce formatted 
“reports” Software that controls an automated machine (e.g., numerical control) accepts discrete data 
items with limited structure and produces individual machine commands in rapid succession. 
 
Information determinacy refers to the predictability of the order and timing of information. An engineering 
analysis program accepts data that have a predefined order executes the analysis algorithm without 
interruption and produces resultant data in report or graphical format. Such applications are determinate. 
A multiuser operating system on the other hand accepts inputs that have varied content and arbitrary 
timing executes algorithms that can be interrupted by external conditions and produces output that varies 
as a function of environment and time. Applications with these characteristics are indeterminate. 
It is somewhat difficult to develop meaningful generic categories for software applications. As software 
complexity grows neat compartmentalization disappears. The following  software areas indicate the 
breadth of potential applications: 
 
System Software System software is a collection of programs written to service other programs. Some 
system software (e.g., compiler s editors and file management utilities) processes complex but determinate 
information structures . Other systems application (e.g., operating system components drivers 
telecommunications processors ) process largely indeterminate data. In either case the systems software 
area is characterized by heavy interaction with computer hardware heavy usage by multiple users; 
concurrent operation that requires scheduling resource sharing and sophisticated process management ; 
complex data structures and multiple external interfaces. 
 
Real-Time Software Programs that monitor/analyze/ control real world events as they occur are called 
real-time software. Elements of real-time software include a data gathering component that collects and 
formats information from an external environment an analysis component that transforms information as 
required by the application a control / output component that responds to the external environment so 
that real-time response (typically ranging from 1 millisecond to 1 minute ) can be maintained. It should be 
noted that the term “real-time” differs from “interactive” or timesharing”. A real-time system must 
respond within strict time constraints. The response time of an interactive (or time-sharing) system can 
normally be exceeded without disastrous results. 
Business Software Business information processing is the largest single software application area. 
Discrete “systems” (e.g., payroll accounts receivable/payable inventory, etc.,) have evolved into 
management information system (MIS) software that accesses one or more large databases containing 
business information. Applications in this area restructure existing data in a way that facilitates business 
operation or management decision making. In addition to conventional data processing applications, 
business software applications also encompass interactive and client/server computing (e.g., point-of-
scale transaction processing) 
 
Engineering and Scientific Software  Engineering and Scientific software has been characterized by 
“number crunching” algorithms. Application range from astronomy to volcanology from automotive 
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stress analysis to space shuttle orbital dynamics and from molecular biology ot automated manufacturing 
. However new applications with the engineering/scientific area are moving away from conventional 
numerical algorithms. Computer aided design system simulation and other interactive applications have 
begun to take on real-time and even system software characteristics. 
 
Embedded Software Intelligent products have become commonplace in nearly every consumer and 
industrial market. Embedded software resides in read only memory and is used to control products and 
systems for the  consumer and industrial markets. Embedded software can perform very limited and 
esoteric functions (e.g., digital functions in an automobile such as fuel control, dashboard displays, 
braking systems, etc.,). 
 
Personal Computer Software   The personal computer software market has burgeoned over the past 
decade. Word processing, spreadsheets, computer graphics, multimedia entertainment, database 
management personal and business financial applications and external network or database access are 
only a few of hundreds of application. 
 
Artificial Intelligence Software Artificial Intelligence (AI) software makes use of non numerical 
algorithms to solve complex problems that are not amenable to computation or straight  forward analysis. 
An active AI area is expert systems also called knowledge-based systems. However other application 
areas for AI software are pattern recognition (image and voice) theorem proving and game playing. In 
recent years a new branch of AI software called artificial neural networks, has evolved. A neural network 
simulates the structure of brain processes (the functions of the biological neuron) and may ultimately lead 
to a new class of software that can recognize complex patterns and learn from past experience. 
 

1.6 Software: A Crisis on the Horizon 
 
Many industry observers have characterized the problems associated with software development as a 
“crisis” Yet what we really have amy be something rather different. 
 
The word “crisis “ is defined in Webster’s Dictionary as “ a turning point in the course of anything : 
decisive or crucial time stage or event “ Yet for software there has been no “turning point” no “decisive 
time” only slow evolutionary change. In the software industry we have had a “crisis “ that has been with 
us for close to 30 years and that is a  contradiction in terms. 
 
Anyone who looks up the word “crisis” in the dictionary will find another definition: ”the turning point in 
the course of a disease when it becomes clear whether the patient will live or die.“  This definition may 
give us a clue about the real nature of the problems that have plagued software development. 
 
We have yet to reach the stage of crisis in computer software. What we really have is a chronic affliction. 
The word “affliction “ is define as anything causing pain or distress” But it is the definition of the adjective 
“chronic” that is the key to our argument: “lasting a long time or recurring often; continuing indefinitely”. 
It is far more accurate to describe what we have endured for the past three decades as a chronic affliction 
rather that a crisis. There are no miracle cures, but there are many ways that we can reduce that pain as we 
strive to discover a cure. 
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Figure  1.4  The impact of change 
Whether we call it a software crisis or a software affliction the term alludes to asset or problems that are 
encountered in the development of computer software. The problems are not limited to software that 
“doesn’t function properly” Rather, the affliction encompasses problems associated with how we develop 
software how we maintain a growing volume of existing software and how we can expect to keep pace 
with a growing demand for more software. Although reference to a crisis or even an affliction can be 
criticized for being melodramatic the phrases do serve a useful purpose by denoting real problems that are 
encountered in all area of software development. 
 

1.7  Software Myths 
 
Many causes of a software affliction can be traced to a mythology that arose during the early history of 
software development. Unlike ancient myths which often provided human lessons that are well worth 
heeding software myths propagated misinformation and confusion. Software myths had a number of 
attributes that made them insidious ; For instance they appeared to be  reasonable statements of fact 
(sometimes containing elements of truth) they had an intuitive feel and they were often promulgated by 
experienced practitioners who “knew the score”. 
 
Today most knowledgeable professionals recognize myths for what they are— misleading attitudes that 
have caused serious problems of managers and technical people alike. However old attitudes and habits 
are difficult to modify and remnants of software myths are still believed. 
 
Management Myths Managers with software responsibility like managers in most disciplines are often 
under pressure to maintain budgets keep schedules from slipping and improve quality.  Like a drowning 
person who grasps at a straw a software a manager often grasps at belief in a software myth if that belief 
will lessen the pressure(even temporarily). 
 
Myth:  We already have a book that’s full of standard and procedures for building software. Won’t that 
provide my people with everything they need to know? 
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Reality:  The book of standards may very well exist, but is it used? Are software practitioners aware of its 
existence? Does it reflect modern software development practice? Is it complete?  In many cases the 
answer to all of these question is “no”. 
 
Myth:  My people do have state of the art software development tools, After all we buy them the newest 
computers. 
 
Reality:   It takes much more that the latest model mainframe workstation or PC to do high quality 
software development Computer aided software engineering (CASE) tools are more important than 
hardware for achieving good quality and productivity yet the majority of software developers still do not 
use them. 
 
Myth:  If we get behind schedule we can add more programmers and catch up (sometimes called the 
“Mongolian horde concept”) 
 
Reality:   Software development is not a mechanistic process like manufacturing. In the words of Brooks 
[BRO75], adding people to a late software project makes it later”. At first this statement may seem 
counterintuitive. However as new people are added people who were working must spend time 
education the newcomers hereby reducing the amount of time spent on productive development effort. 
People can be added but only in a planned and well coordinated manner. 
 
Consumer Myths:   A customer who request computer software may be a person at the next desk, a 
technical group down the hall the marketing /sales department or an outside company that has requested 
software under contract. In many cases the customer believes myths about software because software 
responsible managers and practitioners do little to correct misinformation > Myths lead to false 
expectations (by the consumer ) and ultimately dissatisfaction with the developer. 
 
Myth: A general statement of objectives is sufficient to begin writing programs we can fill int eh details 
later. 
 
Reality:   poor up-front definition is the major cause of failed software efforts. A formal and detailed 
description of information domain, function performance interfaces, design constraints and validation 
criteria is essential. These characteristic can be determined only after thorough communication between 
customer had developer. 
 
Myth  Project requirements continually change , but change can be easily accommodated because software 
is flexible. 
 
Reality   It is true that software requirements do change, but the impact of change varies with the time at 
which it is introduced. Figure 1.4 illustrates the impact of change. If serous attention is given to up-front 
definition early requests for change can be accommodated easily. The customer can review requirements 
and recommend modification with relatively little impact on cost . When changes are requested during 
software design cost impact grows rapidly. Resources have been committed and  a design framework has 
been established. Change can cause upheaval that requires additional resources and major design 
modification i.e., additional cost, Changes in function, performance interfaces or other characteristics 
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during implementation (code and test ) have a severe impact on cost. Change, when requested after 
software is in production use can be more than an order of magnitude more expensive than the same 
change requested earlier. 
 
Practitioner’s Myth  Myths that are still believed by software practitioners have been fostered by decades 
of programming culture. As we noted earlier in this chapter during the early days of software 
programming was viewed as an art form. Old ways and attitudes die hard. 
 
Myth  Once we write the program and get it to work our job is done. 
 
Reality   Someone once said that “ the sooner you begin ‘writing code ‘, the longer it‘ll  take you to get 
done” Industry data indicate that between 50and 70 percent of all effort expended on a program will be 
expended after it is delivered to the customer for the first time. 
 
Myth   Until I get the program ‘’running,’’ I really have now a of assessing its qualtiy. 
 
Reality   One of the most effective software quality assurance mechanisms can be applied from the 
inception fo a project the formal technical review. Software review are a ‘’quality filter’’ tha ;t has ebeb 
found to be more effetive than testing for finding certain classes of software errors.   
 
Myth :   The only deliverable for a successful project is the working program. 
 
Reality :   A working program is only one part of a software configuration that includes programs, 
documents and data. Documentation forms the foundatin for successful developmetn and more important 
provides guidance for the software maintenance task. 
 
Many software professionals recognize the fallacy fo the myths described above. Regrettably habitual 
attitudes and mehtods foster poor management and technical practices even when reality dictates a better 
approach. Recognition of software realities is the first step toward formulation of pratical solutions for 
software development. 

 

1.8 Short Summary 
 

 Software has become the key element in the evolution of compuiter based systems and products.  
Over the  past four decades,  software has evolved from a specialized problem-solving and 
informaiton analysis tool to an industry in itself.  But early  ‘ programming ‘  culture  and hsitory have 
created a set  of problems that persists today.  Software has become a limiting factor in the evolution 
of computer based systems.   

 
 Software is composed of programs, data, and ddocuments.  Each of these items comprises a 

configuration that is created as part of the software engineering process.  The intent of software 
engineering is to provide a framework for  building software with higher quality. 
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1.9 Brain Storm 
 
1. Write a note on software components. 

2. write a note on software applicaitons. 
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2.1 Snap Shot 
 
Software engineering is performed by creative, knowledgeable  people  who should work within a defined 
and mature software process.  The intent of this lecture  is to provide a survey of the current state of the  
software process and to provide pointers to more detailed discussion of management . 
 

2.2 Software Engineering – Layered Technology 
 
Although hundreds of authors have developed personal definitions of software engineering, a definition 
proposed by Fritz Bauer at the seminal conference on the subject still serves as a basis for discussion: 
 
“Software engineering is the establishment and use of sound engineering principles in order to obtain economically 
software that is reliable and works efficiently on real machines. “ 
 
Almost every reader will be tempted to add to this definition. It says little about the technical aspects of 
software quality; it does not directly address the need for customer satisfaction or timely product delivery; 
it omits mention of the importance of measurement and metrics; it does not state the importance of a 
mature process. And yet, Bauer’s definition provides us with a baseline. What are the “sound engineering 
principles” that can be applied to computer software development? How do we “economically” build 
software so that it is “reliable”? What is required to create computer programs that work “efficiently” on 
not one but many different “real machines”? These are the questions that continue to challenge software 
engineers. 
 
The IEEE [IEE93] has developed a more comprehensive definition when it states; 
 
“Software Engineering (1) The application of a systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software that is, the application of engineering to software. 
(2) The study of approaches as in (1) “.  
 

2.3 Process, Methods, and Tools 
 
Software engineering is a layered technology. Any engineering approach must rest on an organizational 
commitment to quality. Total quality management and similar philosophies foster a continuous process 
improvement culture, and it is this culture that ultimately leads to the development of increasingly more 
mature approaches to software engineering. The bedrock that supports software engineering is a focus on 
quality.  
 
The foundation for software engineering is the process layer. Software engineering process is the glue that 
holds the technology layers together and enables rational and timely development of computer software. 
Process defines a framework for a set of key process areas that must be established for effective delivery of 
software engineering technology. The key process areas form the basis for management control of 
software projects and establish the context in which technical methods are applied, work products are 
produced, milestones are established, quality is ensured, and change is properly managed. 
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Figure 2.1  software engineering layers 
 

 
Software engineering methods provide the technical “how to’s” for building software. Methods 
encompass a broad array of tasks that include requirements analysis, design, program construction, 
testing, and maintenance. Software engineering methods rely on a set of basic principles that govern each 
area of the technology and include modeling activities and other descriptive techniques. 
 
Software engineering tools provide automated or semi-automated support for the process and the 
methods. When tools are integrated so that information created by one tool can be used by another, a 
system for the support of software development, called computer-aided software engineering, is 
established. CASE combines software, hardware, and a software engineering database to create a software 
engineering environment that is analogous to CAD/CAE for hardware. 
 

2.4 A Generic View of Software Engineering 
 
Engineering is the analysis, design, construction, verification, and management of technical entities. 
Regardless of the entity that is to be engineered, the following questions must be asked and answered: 
 
• What is the problem to be solved? 
• What are the characteristics of the entity that is used to solve the problem? 
• How will the entity be realized? 
• How will the entity be constructed? 
• What approach will be used to uncover errors that were made in the design and construction of the 

entity? 
• How will the entity be supported over the long term, when corrections, adaptations, and 

enhancements are requested by users of the entity? 
Throughout this book we focus on a single entity computer software.  To engineer software adequately, a 
software development process must be defined.  In this section the generic characteristics of the software 
process are considered.  Later in  this chapter, specific process models are addressed. 
 
The work that is associated with software engineering can be categorized in to three generic phases, 
regardless of application area, project size, or complexity.  Each phase addresses one or more of the 
questions noted above.   
 
The definition phase focuses on what.  That is, during definition, the software developer attempts to 
identify what information is to be processed what function and performance are desired, what system 
behavior can be expected, what interfaces are to be established, what design constraints exist, and what 
validation criteria are required to define a successful system.  The key requirements of the system and the 

Tools 

Methods 

Process 

A quality focus 
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software are identified.  Although the methods applied during the definition phase will vary depending 
upon the software engineering paradigm ( or combination of paradigms) that is applied, three major tasks 
will occur in some form. System or information engineering software project, planning and requirements 
analysis. 
 
The development phase focuses on how.  That is during development a software engineer attempts to 
define how data are to be structured, how function is to be implemented as a software architecture, how 
procedural details are to be implemented, how interfaces are to be characterized, how the design will be 
translated into a programming language ( or nonprocedural language)  and how testing will be 
performed.  The methods applied during the development phase will vary, but three specific technical 
tasks should always occur software design code generation and software  testing. 
 
The maintenance phase focuses on change that is associated with error correction, adaptations required as 
the software’s environment evolves and changes due to enhancements brought above by changing 
customer requirements.  The maintenance phase reapplies the steps of the definition and development 
phases, but does so in the context of existing software.  Four types of change are encountered during 
maintenance phase. 
 
Correction.  Even with the best quality assurance activities, it is likely that the customer will uncover 
defects in the software,  corrective maintenance changes the software to correct defects. 
 
Adaptation. Over time, the original environment (e,g CPU, operating system, business rules external 
product characteristics) for which the software was developed is likely to change.  adaptive maintenance 
results in modification to the software to accommodate changes to its external environment. 
 
Enhancement.   As software is used, the customer/user will recognize additional functions that will 
provide benefit,  perfect maintenance extends the software beyond its original functional requirements.  
 
Prevention.   Computer software deteriorates due to change, and because of this, preventive maintenance, 
often called software reengineering, must be conducted to enable the software to serve the needs of its end 
users.  In essence, preventive maintenance makes changes to computer programs so that they can be more 
easily corrected, adapter, and enhanced. 
 
Today, the “aging software plant” is forcing many companies to pursue software reengineering strategies.  
In a global sense, software reengineering is often considered as part of business process reengineering 
[STR 95] 
 
The phases and related steps described in our generic view of software engineering are complemented by 
a number of umbrella activities.  Typical activities in this category include. 
 

 Software project tracking and control 

 Formal technical reviews 

 Software quality assurance 

 Software configuration management 

 Document preparation and production 

 Reusability management  

 Measurement 
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 Risk management 

 
Umbrella activities are applied throughout the software process and are discussed in parts Two and Five 
of this book. 
 

2.5 The Software Process. 
 
A software process can be characterized as shown in fig 2.2.   A common process framework is established 
by defining a small number of framework activities that are applicable to all software projects, regardless 
of their size or complexity. A number of task sets each a collection of software engineering work tasks, 
project milestones, software work products and deliverables, and quality assurance points enable the 
framework activities to be adapted to the characteristics of the software project and the requirements of 
the project team. Finally umbrella activities such as software quality assurance, software configuration 
management, and measurement overlay the process model.  Umbrella activities are independent of any 
one-framework activity and occur throughout the process. 

 
Figure 2.2  The software process 
 
In recent years, there has been a significant  emphasis on “process maturity”[PAU 93].  The Software 
Engineering Institute (SEI) has developed a comprehensive model that is predicated on a set of software 
engineering capabilities that should be present as organizations reach different levels of process maturity.  
To determine an organizaton’s current state of process maturity, the SEI uses an assessment questionnaire 
and a five-point grading scheme.  The grading scheme determines compliance with a capability maturity 
model [PAU93] that defines key activities required at different levels of process maturity.  The SEI 
approach provides a measure of the global effectiveness of  a company’s software engineering practices 
and established five process maturity levels, which are defined in the following manner. 
 
Level 1: Initial  The software process is characterized as ad hoc, and occasionally even chaotic.  Few 
processes are defined, and success depends on individual effort. 
 

Common Process  Frame Work Common Process  Frame Work 
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Level 2: Repeatable – Basic project management processes are established to track cost, schedule, and 
functionality.  The necessary process discipline is in place to repeat earlier successes on projects with 
similar applications. 
 
Level 3: Defined – The software process for both management and engineering activities is documented, 
standardized  and integrated into an organization wide software process.  All projects  use a documents 
and approved version of the organization’s process for developing and maintaining software.  This level 
includes all characteristics defined for level 3. 
Level 4:   Managed -  Detailed measures of the software process and product quality are collected.  Both 
the software process and products are quantitatively understood and controlled using detailed measures.  
This level includes all characteristics defined for level 3. 
 
Level 5:  Optimizing – Continuous process improvement is enabled by quantitative feedback from the 
process and from testing innovative ideas and technologies.  This level includes all character istics defined 
for level 4. 
 
The five levels defined by the SEI are derived as a consequence of evaluating responses to the SEI 
assessment questionnaire that is based on the CMM.  The results of the questionnaire are distilled to a 
single numerical grade that provides an indication of an organization’s process maturity. 
 
The SEI has associated key process areas with each of the maturity levels.  The KPAs describe those 
software engineering functions ( e.g software project planning, requirements management )  that must be 
present to satisfy good practice at a particular level.  Each KPA is described by identifying the following 
characteristics. 
 
• Goals the overall  objectives that the KPA must achieve 

• Commitments requirements ( imposed on the organization)  that must be met achieve the goals, 
and that provide proof of intent to comply with the goals  

• Abilities those things that must be in place ( organizationally and technically)  that will enable that 
organization to meet the commitments  

• Activities the specific tasks that are required to achieve the KPA function.   

• Methods for monitoring implementation – the manner in which the activities are monitored as they 
are put into place. 

• Methods for verifying implementation – the manner in  which proper  practice for the  KPA  can be 
verified. Eighteen KPAs  (each described using the structure noted above) are defined across the 
maturity model and are mapped into  different levels of process maturity.  The following KPAs  
should  be achieved at each process maturity level: 

 
Process maturity level 2 
⊥ Software configuration management  
⊥ Software quality assurance 
⊥ Software subcontract management 
⊥ Software project tracking and oversight 
⊥ Software project planning 
⊥ Requirement management 
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Process maturity level 3 
⊥ Peer reviews  
⊥ Inter group coordination 
⊥ Software product engineering 
⊥ Integrated software management 
⊥ Training program  
⊥ Organization process definition  
⊥ Organization process focus 
 
Process maturity level 4 
⊥ Software quality management 
⊥ Quantitative process management 
⊥ Process maturity level 5 
⊥ Process change management 
⊥ Technology change management 
⊥ Defect prevention 
 
Each  of the   KPAs  is defined by a set of key practices that contribute to satisfying its goals.  The key 
practices are policies, procedures, and activities that must occur before a key process area has been fully 
instituted.  The SEI  defines key indicators as “those key practices or components of key practices that 
offer the greatest insight into whether the goals of a key process area have been  achieved.  “ assessment 
questions are designed to probe for the existence (or lack thereof) of a key indicator. 
 

2.6 Software Process Models 
 
To solve actual problems in an industry setting, a software engineer or a  team of engineers must 
incorporate a development strategy that encompasses the process, methods, and tools layers described in 
previous section and the generic phases  also discussed in previous section.  This strategy is often referred 
to as a process model or a software  engineering paradigm.  A process model  for software  engineering is 
chosen based on the nature of the project and application, the methods and tools to be used, and the 
controls and deliverables that are required.  In  an intriguing  paper  on the nature of the software process, 
L.B.S. raccoon  [RAC95]  uses fractals as the basis for a  discussion of the true nature of the software 
process. 
 
All software development  can be characterized as a problem solving loop(figure 2.3a) in which four 
distinct stages are encountered;  status quo, problem  definition, technical development, and solution 
integration.  Status quo “ represents the current state of affairs” ; problem definition identifies the specific 
problem to be solved; technical development solves the problem through  the application of some 
technology, and solution integration delivers the results who requested the solution in the first place.  
 
The problem solving loop described above applies to software engineering work at many different levels 
of resolution.  It can be used at the macro level when the entire application is considered; at a  middle level 
when program components are being engineered, and even at the line of code level.  Therefore ,  a figure 
2.3b, each stage in the problem solving loop contains an identical problem solving loop, which  contains 
still another problem solving loop (this  continues to some rational  boundary; for software, a line of code); 
 
Realistically, it is difficult to compartmentalize activities as neatly  as figure 2.3b  implies because cross 
talk occurs within and across stages, yet this simplified view leads to a very important idea; regardless of 
the process model that is chosen for a software project,   all of the stages – status quo, problem definition, 
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technical development, and solution integration-coexist simultaneously at some level of detail.  Given the 
recursive nature figure 2.3b the four  stages discussed above apply equally to the analysis of a complete 
application and to the generation of a small segment of code. 
 
Raccoon suggests a “Chaos model”; that describes “ software development a continuum from the user to  
the developer to the technology”. As work progresses toward a complete system, the stages described 
above are applied recursively to user  needs and the developer’s  technical specification of the  software. 
 

2.7 Linear Sequential Model 
 
Figure 2.4  illustrates that linear sequential model for software engineering.  Sometimes called the “classic 
life cycle” or the  “waterfall model”, the linear sequential model suggests  a systematic, sequential 
approach to software development that begins at the system level and progresses through analysis, design 
coding, testing, and maintenance.  Modeled after the conventional  engineering cycle, the linear sequential 
model encompasses the following activities. 
 
System / information engineering and modeling.  Because software always part of a larger system ( or 
business), work begins by establishing requirements for all system elements and then allocating some 
subset of these requirements to software.  This system view is essential when software must interface with 
other elements such as hardware, people, and gathering at the system level with a small amount of top 
level analysis and design.  Information engineering encompasses  requirements gathering a the strategic 
business level and at the business area level. 
 
Software  requirements analysis. The requirements gathering process is intensified and focused 
specifically on  software.  To understand  the nature of the program(s) to  be built, the software engineer 
must understand the information domain  for the software, as well as required function, behavior, 
performance, and interfacing requirements for both the system and the software are documented and 
reviewed with the customer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3a  Tthe phases of a problem solving loop  
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Figure 2.3b the phases within phases of the problem soling loop 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4 The linear  sequential model. 
 
Design Software design is actually a multistep process that focuses of four distinct attributes of a 
program; data structure, software architecture interface representations, and procedural detail.  The 
design process translates requirements into a representation of the software that can be assessed for 
quality before code generation begins.  Like requirements, the design is documented and becomes part of 
the software configuration. 
 
Code generation  The design must be translated into a machine readable form.  The code generation step 
performs this task.  If design is performed in a detailed manner, code generation can be accomplished 
mechanistically. 
 
Testing  Once code has been generated, program testing begins.  The testing process focuses on the logical 
internals of the software, assuring  that all statements have been tested, and on the functional externals 
that is  conducting  tests to uncover errors and ensure that defined input will produce actual results that 
agree with required result. 
 
Maintenance Software will undoubtedly undergo change after it is delivered to the customer.  Change 
will occur because errors have been encountered, because the software must be adapted to accommodate 
changes  in its external environment ( e.g.  a change required because of a new operating system or 
peripheral device), or because the customer requires functional or performance enhancements.  Software 
maintenance reapplies each of the preceding phases to an existing program rather than a new one. 
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The linear sequential model  is the  oldest and the most widely used paradigm for software engineering.  
However, criticisms of the paradigm has caused even active supporters to question its efficacy.  Among 
the problems that are sometimes encountered when the linear sequential model is applied are: 
 
1.  Real projects rarely follow the sequential flow that the model proposes.  Although the linear model 

can accommodate iteration,  it does so indirectly.  As a result, changes can cause confusion as the 
project team proceeds. 

 
2.  It is often difficult for the customer to state all requirements explicitly.  The linear sequential model 

requires this and has difficulty accommodating the natural uncertainty that exists at the beginning of 
many projects. 

3.  The customer must have patience.  A working version of the program(s) will not be available until 
late in the project time-span.  A major blunder, if undetected  until the working program is reviewed, 
can be disastrous. 

 
4.   Developers are often delayed unnecessarily,  in an interesting analysis of actual projects, Bradac 

found that the linear nature of the classic life cycle leads to “blocking states”  in which some project 
team members must wait for other members of the team to complete dependent tasks.  In fact, the 
time spent waiting can exceed the time spent on productive work!  The blocking states tend to be 
more prevalent at the beginning and end of a linear sequential process. 

 
Each of these problems is real.  However, the classic life cycle paradigm has a definite and important place 
in software engineering work.  It provides a template into which methods for analysis, design, coding, 
testing, and maintenance can be placed.  The classic life cycle remains the most widely used process model 
for software engineering.  While it does have weaknesses, it is  significantly better than a haphazard 
approach to software development. 
 

2.8  Evolutionary Software Process Model 
 
There is growing  recognition that software, like all complex systems, evolves over a period of time.  
Business and product requirements often change as development proceeds, making a straight line path to 
an end product unrealistic; tight market deadlines make completion of a comprehensive software product 
impossible, but a limited version must be introduced to meet competitive or business pressure; a set of 
core product or system requirements is well understood, but the details of product or system extensions 
have yet to be defined.  In these and similar situations, software engineers need a process model that has 
been explicitly designed to accommodate a product that evolves over time. 
 
The linear sequential model is designed for straight line development.  In essence, this waterfall approach 
assumes that a complete system will be delivered after the linear sequence is completed. The Evolutionary 
models are iterative.  They are charaterized ina manner that enables software engineers to develop 
increasingly more complete versions of the software. 

 
2.9 The Incremental Model 

 
The incremental model combines  elements of the linear sequential  model with the iterative philosophy  
of prototyping.  As figure 2.5  shows, the incremental model applies linear sequences in a staggered 
fashion as  calendar time progress.  Each linear sequence produces as deliverable “increment” of  the 
software.  For example word processing software  developed using the incremental paradigm might 
deliver basic file management, editing, and document production functions in  the first increment; more 
sophisticated editing and document production capabilities in the second increment;   spelling and 
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grammar checking in the third increment; and advanced  page layout capability in the fourth increment.  
It should be noted that the process flow for any increment can incorporate the prototyping paradigm. 
 
When  an incremental model is used, the first increment is often a core product.  That is basic 
requirements are addressed, but many supplementary features,(some known, others unknown)  remain 
undelivered.  The core product is used by the customer (or undergoes detailed review).  As a result of use 
and/or evaluation, a plan is developed for the next increment.  The plan addresses the modification of the 
core product to better meet the needs of the customer and the delivery of additional features and 
functionality.  This process is repeated following the delivery of each increment, until the complete 
product is produced. Early increments are  “stripped down” versions of the final product but they do 
provide capability that serves the user and also provide a platform for evaluation by the user. 
 

Figure 2.5 The incremental model 
 
Incremental  development is particularly useful when staffing is unavailable  for a complete 
implementation by the business deadline that has been  established for the project.  Early increments can 
be implemented  with fewer people.  If the core product is well received, then additional staff can be 
added to implement the next increment.  In addition,  increments can be planned to manage technical 
risks.  For example, a major  system might require  the availability of new hardware that is under 
development and whose  delivery date is uncertain.  In might be possible to plan early increments in a 
way that avoids the use of this hardware, thereby  enabling partial functionality to  be delivered to end 
users without inordinate delay. 

 

Analysis 
 

Analysis  

Analysis
 

Design  

Analysis
 

Code  

Analysis
 

Test 

System/Information 
Engineering 

 

Analysis 
 

Analysis  

Analysis
 

Design  

Analysis
 

Code  

Analysis
 

Test 

 

Analysis 
 

Analysis  

Analysis
 

Design  

Analysis
 

Code  

Analysis
 

Test 

 

Analysis 
 

Analysis  

Analysis
 

Design  

Analysis
 

Code  

Analysis 
 

Test 

Increment 2 Deliver of 2nd increment 

Increment 3 Deliver of 3rd increment 

Increment 4 Deliver of 4th increment 

Deliver of 1st increment 

Increment 1 

Calendar Time 



Process 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 25 

 
2.10  The Formal Methods Model 

 
The formal methods model encompasses a set of activities that lead to mathematical specification of 
computer software.  Formal  methods enables a software  engineer to specify,  develop, and verify a 
computer based system by applying a  rigorous, mathematical notation.  A variation on this approach, 
called clean room software engineering, is currently applied by some software development 
organizations. 
 
When formal methods are used during development, they provide a mechanism for eliminating many of 
the problems that are difficult to overcome using other software engineering paradigms, ambiguity, in 
completeness, and inconsistency can be discovered and corrected  more easily not through ad hoc review,  
but through  the application of mathematical analysis.  When formal methods are used during design, 
they serve as a basis for program verification and therefore enable the software engineer to discover and 
correct errors that might otherwise go undetected. 
 
 Although not yet a mainstream approach, the formal methods model offers the promise of defect free 
software.  Yet, concern about its applicability in a business environment has been voiced. 
 
1.  The development of formal models is currently quire time  consuming and expensive . 
 
2.  Because few software developers  have the necessary background to apply formal methods, extensive 

training is required. 
 
3.  It is difficult to use the models as a communication mechanism for technically unsophisticated 

customers. 
 
These  concerns notwithstanding, it is likely that the formal methods approach will gain adherents among 
software developers that must built safety critical software and among  developers that would suffer 
severe economic hardship should software errors occur. 
 

 
2.11 Short Summary 

 
 Software engineering is a discipline that integrates process, methods, and tools for the development 

of computer software.  A number of different process models  for software engineering have been 
proposed, each exhibiting  strengths and weaknesses, but all having a series of generic phases in 
common.   

 
 The principles, concepts, and methods that enable us to perform the process that we call software 

engineering are considered throughout  the remainder of this book. 
 
2.12 Brain Storm 

 
1. Explain Software Process 
2. Write a note on Incremental Model 
3. Write a note on Linear Sequential Model. 
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3.1 Snap Shot  
 
In this lecture we are going to learn about what is Management spectrum and people, the problem and the 
process in the Management spectrum. 
 

3.2 The Management Spectrum 
 
Effective software project management focuses on the three P’s:  people, problem, and process.  The order 
is not arbitrary.  The manager who forgets that software engineering work is an intensely human 
endeavor will never have success in project management.  A manager who fails to encourage 
comprehensive customer communication early in the evolution of a project risks building an elegant 
solution for the wrong problem.  Finally the manager who pays little attention to the process runs the risk 
of inserting competent technical methods and tools into a vacuum. 
 
People 
 
The cultivation of motivates, highly skilled software people has been discussed since the 1960s (e.g., 
[COU80, DeM87, WIT94].  In fact, the “people factor” is so important that the Software engineering 
Institute has developed a people management capability maturity model “ to enhance the readiness of 
software organizations to undertake increasingly complex applications by helping to attract, grow, 
motivate, deploy, and retain the talent needed to improve their software development 
capability”[CUR94]. 
 
The people management maturity model defines the following key practice areas for software people 
career development, selection performance management, training, compensation, career development, 
organization and work design and team culture development.  Organization that achieve high levels of 
maturity in the people management area have a higher likelihood of implement effective software 
engineering practices. 
 
The PM-CMM is a companion to the software capability maturity model which guides organizations in 
the creation of a mature software process.  Issues associated with people management and structure for 
software projects are considered later in this lecture. 
 
The problems 
 
Before a project can be planned, its objectives and scope should be established, alternative solutions 
should be considered, and technical and management constraints should be identified.  Without this 
information, it is impossible to define reasonable ( and accurate) estimates of the cost; an effective 
assessment of risk; a realistic breakdown of project tasks; or a manageable project schedule that provides a 
meaningful indication of process. 
 
The software developer and customer must meet to define project objectives and scope.  In many cases, 
this activity begins as part of the system engineering process and continues as the first step in software 
requirements analysis.  Objectives identify the overall goals of the project with out considering how these 
goals will be achieved.  Scope identifies the primary  data, functions, and behaviors that characterize the 
problem, and more important attempts to bound these characteristics in a quantitative manner. 
 
Once the project objectives and scope are understood, alternative solutions are considered.  Although very 
little details is discussed, the alternatives enable managers and practitioners to select a “best”  approach, 
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given the constraints imposed by delivery deadlines, budgetary restrictions personnel availability, 
technical interfaces, and myriad other factors. 
 
The process 
 
A software process provides the framework from which a comprehensive plan for software development 
can be established.  A small number of framework activities are applicable to all software projects, 
regardless of their size or complexity.  A number of different task sets tasks, milestones, deliverables, and 
quality assurance points enable the framework activities to be adapted to the characteristics of the 
software project and the requirements of the project team.  Finally, umbrella activities such as software 
quality assurance, software configuration management, and measurement overlay the process model.  
Umbrella activities are independent of any one-framework activity and occur throughout the process. 
 

3.3 People 
 
In a study published by the IEEE [CUR 88]  the engineering vice presidents of three major technology 
companies were asked the most important contributor to a successful software project.  They answered in 
the following way. 
 
VP 1:  I guess if you had to pick one thing out that is most important in our environment, I’d say it’s not 
the tools that we use, it’s the people. 
 
VP 2: The most important ingredient that was successful on this project was having smart people.  Very 
little else matters in my opinion.  The most important thing you do for a project is selecting the staff.  The 
success of the software development organization is very, very much associated with the ability to recruit 
good people. 
 
VP3: The only rule I have in management is to ensure I have good people real good people and that I 
grow good people and that I provide an environment in which good people can produce. 
 
Indeed, this is a compelling testimonial on the importance of people in the software engineering process. 
And yet, all of us, from senior engineering vice presidents to the lowliest practitioner, often take people 
for granted.  Managers argue ( as the group above had done)  that people are primary, but their actions 
sometimes belie their words.  In this section we examine the players who participate in the software 
process and the manner in which they are organized to perform effective engineering. 
 
The Players 
 
The software process ( and every software project)  is populated by players who can be categorized into 
one of five constituencies. 
 
1. Senior managers, who define the business issues that often have significant influence on the project. 

2. Project (technical) managers, who must plan, motivate, organize, and control the practitioners who do 
software work. 

3. Practitioners, who deliver the technical skills that, are necessary to engineer a product or application. 

4. Customers, who specify the requirements for the software to be engineered.   

5. End users, who interact with the software once it is released for productions use. 
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Every software  project is populated by the players noted above.  To be effective, the project team must be 
organized in a way that maximizes each person’s skills and abilities.  That’s the job of the team leader. 
 
What do we look for when we  select someone to lead a software project ? In an excellent book of technical 
leadership, Jerry Winberg [WEI86] attempt to answer this question by suggesting the MOI Model 
leadership: 
 
Motivation  The ability to encourage ( by “ push or pull”) technical people to produce to their best ability. 
 
Organization  The ability to mold existing processes( or invent new ones) that will enable the initial 
concept to be translated into a final product. 
 
Ideas or innovation  The ability to encourage people to create and feel creative even when they must 
work within bounds established for a particular software product or application. 
 
Weinberg suggests that successful project leaders apply a problem solving management style.  That is, a 
software project manager should concentrate on understanding the problem to be solved, managing the 
flow of ideas, and at the same time letting everyone on the team know ( by words, and far more 
important, by actions) that quality counts and that it will not be compromised. 
 
Another view [EDG95]  of the characteristics that define an effective project manager emphasizes four key 
traits. 
 
Problem solving   An effective software project manager can diagnose that technical and organizational 
issues that are most relevant, systematically structure  a solution or properly motivate other practitioners 
to develop the solution, apply lessons learned from past projects to new situations, and remain flexible 
enough to change direction if initial attempts at problem solution are fruitless. 
 
Managerial identity  A good project manager must take charge of the project.  She must have the 
confidence to assume control when necessary and the assurance to allow good technical people to follow 
their instincts. 
 
Achievement To optimize the productivity of a project team, a manager must    reward initiative and 
accomplishment, and demonstrate through his own actions that controlled risk taking will not be 
punished. 
 
Influence and Team Building  An effective project manager must be able to read people; she must be able 
to understand verbal and nonverbal signals and react to the needs of the people sending these signals.  
The manager must remain under control in high stress situations. 
 
The software team 
 
There are almost as many human organizational structures for software development as there are 
organizations that develop software.  For better or worse, organizational structure cannot be easily 
modified.  Concern with the practical  and political consequences of organizational change is not within 
the software project manager’s scope of responsibilities.  However, the organization of the people directly 
involved in a new software project is within the project manager’s purview. 
 
The following options are available for applying human resources to a project that will require n people 
working for k years: 
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1. n individuals are assigned to m different functional tasks, relatively little combined work occurs 
coordination is the responsibility of a software manager who may have six other projects to be 
concerned with. 

 
2. n individuals are assigned to m different functional tasks, (m<n)so that informal “teams” are 

established ;an ad hoc team leader may be appointed ;coordination among teams is the responsibility 
of a software manager;  

 
3. n  individuals are organized into t teams ;each team is assigned one or more functional tasks; each 

team has  a specific structure that is defined for all teams working on a project  coordination is 
controlled by both the team and a software project manager.   

Although it is possible to voice pro and con arguments for each of the above approaches, there is a 
growing body of evidence that indicates that a  formal team organization (option 3) is most productive. 
 
The “best” team structure depends on the management style of an organization, the number of people 
who will populate the team and their skill levels and the overall problem difficulty. Mantei  [MAN81] 
suggests three generic team organizations: 
 
Democratic decentralized (DD). This software engineering team has no permanent leader. Rather,” task 
coordinators are appointed for short durations and then replaced by others who may coordinate different 
tasks.” Decisions on problems and approach are made by group consensus. Communication  among team 
members is horizontal 
 
Controlled decentralized (CD). This software engineering team has a defined leader who coordinates 
specific tasks and secondary leaders that have responsibility for subtask. Problem solving remains a group 
activity, but implementation of solutions is partitioned among subgroups by the team leader. 
Communication among subgroups and individuals is horizontal. Vertical.  Communication along the 
control hierarchy also occurs. 
 
Controlled Centralized (CC). Top-level problem solving and internal team coordination are managed by a 
team leader. communication between the leader and team members is vertical. 
 
Mantei also describes seven project factors that should be considered when planning the structure of 
software engineering teams: 
 
• The difficulty of the problem to be solved  

• The time the team will stay together (team lifetime) 

• The degree to which the problem can be modularized  

• The required quality and reliability of the system to be built  

• The rigidity of the delivery date 

• The degree of sociability (communication)required for the projects  

 
Table 3.1 [MAN81] summarizes the impact of project characteristics on team organization. Because a 
centralized structure completes tasks faster, it is the most adept at handling simple problems. 
Decentralized teams generate more and better solutions than individuals. Therefore such teams have a 
greater probability of success when working on difficult problems. Since the CD team is centralized for 
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problem solving, either the CD or the CC team structure can be successfully applied to simple problems. A 
DD structure is best for difficult problems. 
Because the performance of a team is inversely proportional to the amount of communication that must be 
conducted, very large projects are best addressed by teams with a CC or CD structure when sub grouping 
can be easily accommodated. 
 
The impact of project characteristics on team structure [MAN81] 
 

Team type:  DD  CD  CC 

 
Difficulty  
High   x 
Low     x  x 
Size 
Large      x  x 
Small   x 
Team lifetime 
Short     x  x 
Long   x 
Modularity 
High     x  x 
Low   x 
Reliability 
High    x  x 
Low       x 
Delivery date  
Strict       x 
Lax   x  x 
Sociability 
High   x 
Low     x  x 

 
Table 3.1 : The impact of project characteristics on team structure  
 
The length of time the team will “live together” affects team morale. It has been found that DD team 
structures result in high morale and job satisfaction and are therefore good for long lifetime teams. 
 
The DD team structure is best applied to problems with relatively low modularity because of the higher 
volume of communication that is needed. when high modularity is possible (and people can do their own 
thing) the CC or CD structure will work well. 
 
CC and CD teams have been found to produce fewer defects than DD teams, but these data have much to 
do with the specific quality assurances activities that are applied by the team. Decentralized teams 
generally require more time to complete a project than a centralized structure and at the same time are 
best when high sociability is required. 
 
Constantine [CON93] suggests four “organizational paradigms” for software engineering teams. 
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1. A closed paradigm structures a team along a traditional hierarchy of authority ( similar to a CC team).  
Such teams can work well when producing software that is quite similar to past efforts, but they will 
be less likely to be innovative when working within the closed paradigm. 

2. The random paradigm structures a team loosely and depends on individual initiative of the team 
members.  When innovation or technological break through is required, teams following the random 
paradigm will excel.  But such teams may\ struggle when “ orderly performance” is required. 

3. The open paradigm attempts to structure a team in manner that achieves some of the controls 
associated with the closed paradigm but also much of the innovation that occurs when using the 
random paradigm.  Work is performed collaboratively with heavy communication and consensus 
based decision  making.  Open paradigm team structures  are well suited to the solution of complex 
problems, but may not perform as efficiently as other teams. 

4. The synchronous paradigm relies on the natural compartmentalization of a problem and organizes 
team members to work on pieces of the problems with little active communication among themselves. 

 
As an historical footnote, the earliest software team organization was a controlled centralized (CD) 
structure originally called the chief programmer team. This structure was first proposed by Harlan Mills 
and described by Baker [BAK72]. The nucleus of the team is composed of a senior engineer (“the chief 
programmer”) who plans, co ordinates and reviews all technical activities of the team; technical staff 
(normally two to five people ) who  conduct analysis and development activities and a backup engineer 
who supports the senior engineer in project continuity.   
 
The chief programmer may be served by one or more specialists (e.g. telecommunications expert, database 
designer),support staff(e.g., technical writers, clerical personal) and a software librarian. The librarian serves 
many teams and performs the following functions: maintains and controls all elements of the software 
configuration (i.e., documentation, source listings, data, magnetic media); helps collect and format 
software productivity data; catalogs and indexes reusable software modules; and assists the teams in 
research, evolution, and document preparation. The importance of a librarian cannot be overemphasized. 
The librarian acts as a controller , coordinator and potentially, an evaluator of the software configuration. 
Regardless of team organization, the objective for every project manager is to help create a team that 
exhibits cohesiveness. In their book, peopleware, DeMarco and Lister [DeM87] discuss this issue: 
 
We tend to use the word team fairly loosely in the business world, calling any group of people assigned to 
work together a “team”. But many of these groups just don’t seem like teams. They don’t have a common 
definition of success or any identifiable team spirit. What is missing is a phenomenon that we call jell. 
 
A jelled team is a group of people so strongly knit that the whole is greater than the sum of the parts… 
 
Once a team begins to jell, the probability of success goes way up. The team can become unstoppable, a 
juggernaut for success… they don’t need to be managed in the traditional way, and they certainly don’t 
need to be motivated. They’ve got momentum. 
 
DeMarco and Lister contend that members of jelled teams are significantly more productive and more 
motivated than average. They share a common goal, a common culture, and in many cases, a “sense of 
eliteness” that makes them unique. 
 
Coordination and Communication Issues  
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There are many reasons that software projects get into trouble. The scale of many development efforts is 
large, leading to complexity, confusion, and  significant difficulties in coordinating team members. 
Uncertainly is  common, resulting in a continuing stream of changes that ratchets the project team. 
Interoperability has become a key characteristic of many systems. New software must communicate with 
existing software and conform to predefined constraints imposed by the system or product. 
 
These characteristics of modern software-scale, uncertainly, and interoperability-are facts of life. To deal 
with them effectively, a software engineering team must establish effective methods for coordinating the 
people who do the work. To accomplish this, mechanisms for formal and informal communication among 
team members and between multiple teams must be established.  Formal communication is accomplished 
through “writing, structured meetings, and other relatively non-interactive and impersonal 
communication channels”.  Informal communication is more personal.  Members of a software 
engineering team share ideas on an ad hoc basis, ask for help as problems arise, and interact with one 
another daily. 
 
Kraul and Streeter examine a collection of project coordination techniques that are categorized in the 
following manner. 
 
Formal, impersonal approaches   Include software engineering documents and deliverables technical 
memos, project milestones, schedules and project control tools changes requests and related 
documentation error tracking reports, and repository data. 
 
Formal, interpersonal procedures   Focus on quality assurance activities applied to software engineering 
work products.  These include status review meetings and design and code inspections. 
 
Informal, interpersonal procedures  Include group meetings for information dissemination and problem 
solving and “collocation of requirements and developments staff”. 
 
Electronic communication Encompasses electronic mail, electronic bulletin boards, Web sites, and by 
extension, video-based conferencing systems. 
 
Interpersonal network  Informal discussion with those outside the project who may have experience or 
insight that can assist team members. 
 

3.4 The Problem 
 
A software project manager is confronted with a dilemma at the very beginning of a software engineering 
project.  Quantitative estimates and an organized plan are required, but  solid  information is unavailable.  
A detailed analysis  of software requirements would provide necessary information for estimates, but 
analysis often takes weeks or months to complete.  Worse requirements may be fluid, changing regularly 
as the project proceeds.  Yet, a plan is needed “now”. 
 
Therefore  we must examine the problem at the very beginning of the project.  At a minimum,  the scope 
of the problem must be established and bounded. 
 
Software Scope 
 
The first software project management activity is the determination of software scope.  Scope is defined by 
answering the following questions; 
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Context :  how does the software to be built fit into a larger system, product, or business context, and what 
constraints  are imposed as a result of the context? 
 
Information objectives:  What customer visible data objects are produced as output from the software? 
what data objects are required for input? 
 

Function and performance :  What function does the software perform to transform input data into 
output?   Are  any special performance characteristics to be addressed? 
Figure 3.1 Value and use of coordination and communication techniques 
 
Software  project scope must be unambiguous and understandable at management and technical levels.  A 
statement of software scope must be bonded.  That is, quantitative data (e.g., number of simultaneous 
users, size of  mailing list, maximum  allowable response time)   are  stated explicitly; constraints  and/or 
limitations (e.g. product cost restricts memory size)  are noted, and mitigating factors are described.  
 
Problem  Decomposition 
 
Problem decomposition, sometimes called  partitioning, is an activity that sits at core of software 
requirements analysis ( later chapters).  During the scooping activity there is no attempt to fully 
decompose the problem.  Rather decomposition is applied in two major areas : 1.  the  functionality that 
must be delivered  and (2) the process that will be used to deliver it. 
 
Human beings tend to apply a divide and conquer strategy when they are confronted with a complex 
problem.  Stated simply,  a complex problem is partitioned into smaller problems  that are more 
manageable.  This is the strategy that is applied as project planning begins.  Software functions,  described 
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in the statement of scope, are evaluated and regained to provide more detail prior to the beginning of 
estimation.   Because both cost and schedule estimated are functionally oriented, some degree of 
decomposition is often useful. 
The Process 
 
The generic phases that characterize the software process definition, development, and maintenance are 
applicable to all software.  The problem is to select the process model that is appropriate for the software 
to be engineered by a project team.   
 
• The linear sequential model 
• The prototyping model 
• The RAD model 
• The incremental model 
• The spiral model 
• The component development model 
• The formal methods model 
• The fourth generation techniques model 
 
The project manager must decide which process model is most appropriate for the project, then define a 
preliminary plan based on the set of common process frame work activities.  Once the preliminary plan is 
established, process  decomposition begins.  That is, a complete plan reflecting the work tasks required to 
populate the framework activities must be created.  We explore these activities briefly in the sections that 
follow and present a more detailed view in later chapters. 
 
Melding the Problem and the Process 
 
project planning begins with the melding  of the problem and the process. Each function to be engineered 
by the software team must pass through the set of framework activities that have been defined for a 
software organization.  Assume that the organization has adopted the following set of framework 
activities. 
 
• Customer communication – tasks required to establish effective communication between developer 

and customer 

• Planning – tasks required to define resources, timelines, and other project related information. 

• Risk analysis – tasks required to assess both technical and management risk 

• Engineering  -tasks required to build one or more representations of the application 

• Construction and release -  tasks required to construct, test, install, and provide user support. 

• Customer evaluation – tasks required to obtain customer feedback based on evaluation of the 
software representations created during the engineering stage and implemented during the 
installation stage. 

The team members who work on each function will apply each of the framework activities to it.  In 
essence, a matrix similar  to the one shown in figure 3.2 is created.  Each major problem function is listed 
in the left hand column.  Framework activities are listed in the top row. Software engineering work tasks 
would be entered in the following row.  The job of the project manager is to estimate resource 
requirements for each matrix, cell start and end dates for the tasks associated with each cell, and work 
products to be produced as a consequence of each cell, these issues are considered in later chapters. 
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COMMON PROCESS  
FRAMEWORK ACTIVITIES 

 
Software  Engineering Tasks 
Product Functions 
Text Input 
Editing and Formatting 
Automatic copy edit 
Page Layout Capability 
Automatic Indexing and TOC  
File Management 
Document Production 
 
 
 

 
Figure 3.2 Process Decomposition 
 
Process Decomposition 
 
A software team should have a significant degree of flexibility in choosing the software engineering 
paradigm that is best for the project and the software engineering tasks that populate the process model 
once it is chosen.  A relatively small project that is similar to past efforts might be best accomplished using 
the linear sequential approach.  If very tight time constraints are imposed and the problem can be heavily 
compartmentalized, the  RAD  model is probably the right  option.  If the deadline is so tight that full 
functionality cannot reasonably be delivered, an incremental strategy might be best.  Similarly, projects 
with other characteristics will lead to the selection of other process models. 
 
Once the process model has been chosen, the common process framework is adapted  to it.  In  every case, 
the CPF discussed earlier in this chapter customer communication, planning, risk analysis, engineering, 
construction and release, customer evaluation can be fitted to the paradigm.  It will work for linear 
models, for iterative and incremental models, for evolution models, and even for concurrent or component 
assembly models.  The CPF is invariant and serves as the basis for all software work performed by a 
software organization. 
But actual work tasks do vary.  Process decomposition commences when the project manager asks:  “how 
do we accomplish the CPF  activity”?.  For example a small, relatively simple project might require the 
following work tasks for the customer communication activity: 
 
1. Develop  list of clarification issues. 
2. Meet with customer to address clarification issues. 
3. Jointly develop a statement of scope 
4. Review the state of scope with all concerned 
5. Modify the statement of scope as required. 
 
These events might occur over a period of less than 48 hours.  They represent a process decomposition 
that is appropriate for the small, relatively simple project.   
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Now , we consider a more complete project that has a broader scope and more significant business impact.  
Such a project might require the following work tasks for the customer  communication activity. 
 
1. Review the customer request. 
2. Plan and schedule a formal, facilitated meeting with the customer . 
3. Conduct research to define proposed solutions and existing approaches. 
4. Prepare a “working document”  and an agenda for the formal meeting  
5. Conduct the meeting. 
6. Jointly develop mini-specs that reflect data, function, and behavioral features of the software. 
7. Review each mini spec for correctness, consistency, and lack of ambiguity. 
8. Assemble the mini specs into a scooping document. 
9. Review the scooping document with all concerned 
10. Modify the scooping document as required. 
 
Both projects perform the frame work activity that we call customer communication, but the first  project 
team performs half as many software engineering  work tasks as the second. 
 

3.5 The Project 
 
Jaded industry professionals often refer to 90-90 rule when discussing particularly difficult software 
projects:  the first 90 percent of a system absorbs 90 percent of the allotted effort and time.  The last 10 
percent takes the other 90 percent of the allotted effort and time.  This statement tells us much about the 
state of a project that gets into trouble: 
 
The manner in which progress  is  assessed is flawed.  (Obviously, if the 90-90 rule  is true, 90 percent 
complete is not an accurate indicator). 
There is no way to calibrate progress because quantitative metrics are unavailable. The project plan has 
not been designed to accommodate resources required at the end of a project. 
 
Risks have not been considered explicitly, and a plan for mitigating, monitoring, and managing  them has 
not been created. The schedule is (1) unrealistic or (2) flawed. 
 
To overcome these problems, time must be spent  at the beginning of a project to establish a realistic plan, 
during the project to monitor the plan, and throughout the project to control quality and change.  
 

3.6 Short Summary 
 

 Software project management is an umbrella activity within software engineering.  It begins before 
any technical activity is initiated and continues through out the definition, development, and 
maintenance of computer software. 

 There P’s have a substantial influence on software project management people, problem and process.   

 People must be organized into effective teams, motivated to do high quality software work, and 
coordinated to achieve effective  communication.   

 The problem must be communicated from customer to developer, partitioned into its constituent arts, 
and positioned for work by the software team.  
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 The process  must be adapted to the people and the problem.  A common process framework is 
selected, an appropriate software engineering paradigm is applied, and a set of work tasks is chosen 
to get the job done. 

 The pivotal element in all software projects is people,  software engineers can be organized in a 
number of different team structures that range from traditional control hierarchies to  “open 
paradigm” teams.  A variety of coordination and communication techniques can be applied to 
support the work of the team.. In general, formal reviews and informal person to person 
communication have the most value for practitioners. 

3.7 Brain Storm 
 
1. What is Management Spectrum? 
2. Explain briefly about Co-ordination and communication Issues? 
3. Define Software Scope? 
4. Discuss briefly about Problem Decomposition? 
5. Write a Note on Project Decomposition 
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4.1 Snap Shot  
 
The software project management process begins with a set of activities that are collectively called project 
planning.  The first of these activities is estimation.  Whenever estimates are made, we look into the future 
and  accept some degree of uncertainty as a matter of course.   
 
Although estimating is as much art as it is science, this important activity need not be conducted in a 
haphazard manner.  Useful techniques for time and effort estimation do exist.  And because estimation 
lays a foundation for all other project planning activities, and project planning provides the road map for 
successful software engineering, we would be ill advised to embark without it.   
 

4.2 Observations on Estimating  
 
A leading  executive was once asked what single characteristic was most important when selecting a 
project manager.  His response “a person with the ability to know what will go wrong before it actually 
does”.  We might add “and the courage to estimate when the future is cloudy. “ 
 
Estimation of resources, cost, and schedule for software development of fort requires experience, access to 
good historical information, and the courage to commit to quantitative measures when qualitative data 
are all that exist.  Estimation carries inherent risk and it is this risk that leads to uncertainty.   
 
Project complexity has a strong effect on uncertainty that is inherent in planning.  Complexity, however, is 
relative measure that is affected by familiarity with past effort.  A real time application might be perceived 
as “exceedingly complex” to a software group that has previously developed only batch applications.  The 
same real time application might be perceived as “run-of-the–mill” for a software group that has been 
heavily involved in high speed process control.  A number of quantitative software complexity measures 
have been proposed.  Such measures are applied at the design or code level and are therefore difficult to 
use during software planning ( before a design and code exist).  However other, more subjective 
assessments of complexity can be established early in the planning process. 
 
Project size is another important factor that can affect the  accuracy of estimates.  As size increase, the 
interdependency among various elements of the software grows rapidly.  Problem decomposition, an 
important approach to estimating, becomes more difficult because decomposed elements may still be 
formidable.  To paraphrase Murphy’s law:  What can go wrong will go wrong”-and if there are more 
things that can fail, more things will fail. 
 
The degree of structural uncertainty also has an effect on estimation risk.  In this context, structure refers to 
the degree to which requirements have been solidified, the ease with which function can be 
compartmentalized, and the hierarchical nature of information that must be processed. 
 
The availability of historical information also determines estimation risk.  Santayana once said, “ Those 
who cannot remember that past are condemned to repeat it.”  By looking back we can emulate things that 
worked and avoid areas where problem arose.  When comprehensive software metrics are available for 
past projects, estimates can be made with greater assurance; schedules can be established to avoid past 
difficulties, and overall risk is reduced. 
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Risk is measured by the degree of uncertainty in the quantitative estimates established for resources, cost, 
and schedule.  If project scope is poorly understood or project requirements are subject to change, 
uncertainty and risk become dangerously high.  The software planner should demand completeness of 
function, performance, and interface definitions ( contained in a system specification ). The planner, and 
more  important the customer, should recognize that variability in software requirements means 
instability in cost and schedule.   
 
A project manager should not become obsessive about estimation. Modern software engineering 
approaches (e.g., evolutionary process models ) take an iterative view of development. In such 
approaches, it is possible to revisit the estimate (as more information is known) and revise it when the 
customer makes changes to requirements 
 

4.3 Project Planning Objectives 
 
The objective of software project planning is to provide a framework that enables the manager to make 
reasonable estimates of resources, cost, and schedule. These estimates are made within a limited time 
frame at the beginning of a software project and should be updated regularly as the project progresses. In 
addition, estimate should attempt to define “best case” and “worst case” scenarios so that project 
outcomes can be bounded. 
 
The planning objective is achieved through a process of information discovery that leads to reasonable 
estimates. In the following sections, each of the activities associated with software project planning is 
discussed. 
 

4.4 Software Scope 
 
The first activity in software project planning is the determination of software scope. Function and 
performance allocated to software during system engineering should be assessed to establish a project 
scope that is unambiguous and understandable at management and technical levels. 
 
Software scope describes function, performance, constraints, interfaces ,and reliability.  Functions 
described in the statement of scope are evaluated and in some cases refined to provide more detail prior to 
the beginning of estimation. Because both cost and schedule estimates are functionally oriented, some 
degree of decomposition is often useful.  Performance considerations encompass processing and response 
time requirements.  Constraints identify limits placed on the software by external hardware, available 
memory or other existing systems. 
 

4.5 Obtaining Information Necessary for Scope 
 
Things are always somewhat hazy at the beginning of a software project.  A need has been defined and 
basic goals and objectives have been enunciated, but the information necessary to define scope ( a 
prerequisite  for estimation) has not yet been defined. 
 
The most commonly used technique to bridge the communication gap between the customer and 
developer and to get the communication process started is to conduct a preliminary meeting or interview.  
The first meeting between a software engineer( the analyst)  and the customer can be likened to the 
awkwardness of a first date between two adolescents. Neither person knows what to say or ask both are 
worried that what they do say will be misinterpreted; both are worried that what they do say will be 
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misinterpreted; both are thinking about where it might lead ( both likely have radically different 
expectations here)  both want to get the thing over with but at the same time, both want it to be a success. 
 
Yet communication must be initiated.  Gause and Weinberg suggest that the analyst start by asking context 
free questions.  That, is  set of questions that will lead to a basic understanding of the problem, the people 
who want a solution, the nature of the solution that is desired, and the effectiveness of the first encounter 
itself. 
 
The first set of context free questions focus on the customer, the overall goals, and the benefits.  For 
example, the analyst might ask: 
 

 Who is behind the request for this work? 

 Who will use the solution? 

 What will be the economic benefit of a successful solution? 

 Is there another source for the solution? 

 
The next set of questions enable the analyst to gain a better understanding of the problem and the 
customer to voice his or her perceptions about a solution. 
 
• How would you [the customer] characterize “good” output that would be generated by a successful 

solution? 

• What problem(s) will this solution address? 

• Can you show me( or describe) the environment in which the solution will be used? 

• Are there special performance issues or constraints that will affect the way the solution is 
approached? 

 
The final set of questions focus on the effectiveness of the meeting.  Gause and Weinberg call there “meta-
questions” and propose the following (abbreviated )list: 
 
 Are you the right person to answer these questions? Are your answers “official”? 

 Are my questions relevant to the problem that you have? 

 Am I asking too many questions? 

 Is there anyone else who can provide additional information? 

 Is there anything else that I should be asking you? 

 
These questions (and others) will help to “break the ice” and initiate the communication that is essential to 
establish the scope of the project.  But a question and answer meeting format is not an approach that has 
been overwhelmingly successful.  In fact, the Q&A session should be used for the first encounter only and 
then be replaced by a meeting format that combines elements of problem solving, negotiation and 
specification. 
 
A number of independent investigators have developed a team oriented approach to requirements 
gathering that can be applied to help establish the scope of a project.  Called facilitated application 
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specification techniques (FAST),this approach encourages the creation of a joint team of customer and 
developers who work together to identify the problem, propose elements of the solution, negotiate 
different approaches, and specify a preliminary set of requirements. 
 
A scooping Example 
 
Communication with the customer leads to a definition of the data, functions, and behavior that must be 
implemented, the performance and constraints that bound the system and related information.  As an 
example, consider software that must be developed to drive a conveyor line sorting system.  The statement 
of scope for the CLSS follows. 
 
The conveyor line sorting system(CLSS) sorts boxes moving along a conveyor line.  Each box is identified 
by a bar code that contains a part number and is sorted into one of six bins at the end of the line.  The 
boxes pass by a sorting station that contains a bar code reader and a PC.  The sorting station PC is 
connected to a shunting mechanism that sorts the boxes into the bins.  Boxes pass in random order and are 
evenly spaced.  The line is moving at five feet per minute.  A CLSS is depicted schematically in Figure 4.1. 
 
CLSS software receives input information from a bar code reader at time intervals that conform to the 
conveyor line speed.  Bar code data will be decoded into box identification format.  The software will do a 
look-up in a part number data base containing a maximum of 1000 entries to determine proper bin 
location for the box currently at the reader ( sorting station) .   The proper bin location is passed to a 
sorting shunt that will position boxes in the appropriate bin.  A record of the bin destination for each box 
will be maintained for later recovery and reporting.  CLSS software will also receive input from a pulse 
tachometer that will be used to synchronize the control signal to the shunting mechanism.  Based on the 
number of pulses that will be generated between the sorting station and the shunt, the software will 
produce a control signal to the shunt to properly position the box. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Control Connection 

SHUNT 

 

1 

1 

1 

1 

1 

1 
D No 
 

D No 
 

D No 
 

ID No ID No ID No 
 

D No 
 

D No 
 

Shunt 

 
 
 
 
 

SORTING 
STATION 

1 

2 

3 

4 

6 

5 

Conveyer Line Motion 

Bar code 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 46 

The project planner examines the statement of scope and extracts all important software functions.  This 
process, called decomposition, is was discussed in the previous lecture and results in the following 
functions. 
 
Figure 4.1 A Conveyer Line Sorting System 
• Read bar code input 

• Read pulse tachometer  

• Decode part code data 

• Do database look-up  

• Determine bin location 

• Produce control signal for shunt 

• Maintain record of box destinations’ 

 
In this case, performance is dictated by converyor line speed.  Processing for each box must be completed 
before the next box arrives at the bar code reader.  The CLSS software is constrained by the hardware it 
must access ( the bar code reader, the shunt, the PC), the available memory, and the overall conveyor line 
configuration ( evenly spaced boxes) 
 
Function performance, and constraints must be evaluated together.  The same function can precipitate and 
order of magnitude difference in development effort when considered in the context of different 
performance bounds.  The effort and cost required to develop CLSS software would be dramatically it 
function remains the same but performance varies.  For instance, if conveyor line average speed increase 
by a factor of 10 ( performance ) and boxes are no longer spaced evenly (a constraint) software would 
become considerably more complex and thereby require more effort.  Function, performance, and 
constraint are intimately connected. 
 
Software interacts with other elements of a computer based system.  The planner considers the nature and 
complexity of each interface to determine any affect on development respires, cost, and schedule.  The 
concept of an interface is interpreted to mean(1) hardware (e.g. machines, displays)  that are indirectly 
controlled by the software(2) software that already exists (e.g. database access routines, reusable software 
components, operating system)  and must be linked to the new software; (3) people who make use of the 
software via keyboard or other I/O devices; and (4) procedures that precede or succeed the software as a 
sequential series of operations.  In each case the information transfer across the interface must be clearly 
understood. 
 
The least precise aspect of software scope is a discussion of reliability.  Software reliability measures do 
exist but they are rarely used at this stage of a project. Classic hardware reliability characteristics like 
meantime-between failure (MTBF) can be difficult to translate to the software domain.  However, the 
general nature of the software may dictate special considerations to ensure “reliability”. For example, 
software for an are traffic control system or the Space Shuttle ( both human-rated systems)  must not fail 
or human life may be lost.  An inventory control system or word-processing software should not fail, but 
the impact of failure is considerably less dramatic.  Although it may not be possible to quantify software 
reliability as precisely as we would like in the statement of scope, we can use the nature of the project to 
aid in formulating estimates of effort and cost to assure reliability. 
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If a system specification has been properly developed, nearly all information required for a description of 
software scope is available and documented before software project planning begins.  In cases where a 
specification has not been developed, the planner must take on the role of system analyst to determine 
attributes and bounds that will influence estimation tasks. 
 

4.6 Resources 
 
The second task of software planning is estimation of resources required to accomplish the software 
development effort.  Figure 4.2  illustrates development resources as a pyramid.  The development 
environment-hardware and software tools-sits at the foundation of the resources pyramid and provides the 
infrastructure to support the development effort.  At a higher level we encounter reusable software 
components software building blocks that can dramatically reduce development costs and accelerate 
delivery.  At the top of the pyramid is the primary resource-people.  Each resources is specified with four 
characteristics;  description of the resources, a statement of availability, chronological time that the 
resource will be required, and duration of time that the resource will be applied.  The last two 
characteristics can be viewed as a  time window.  Availability of the resource of a specified window must be 
established at the earliest practical time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2  Resources 
 

4.7 Human Resources 
 
The planner begins by evaluating scope and selecting the skills required to complete development. Both 
organizational position ( e.g manager, senior software engineer, etc) and specialty (e.g 
telecommunications, database, client/server) are specified.  For relatively small projects (six person-
months or less) a single individual may perform all software engineering steps, consulting with specialists 
as required. 
 
The number of people required for a software project can be determined only after an estimate of 
development effort (e.g person-months or person years ) is made.  Techniques for estimating effort are 
discussed later in the chapter. 
 

4.8 Reusable Software Resources 
 

People 

Reusable 
Software 

Components 

Hardware/Software Tools 
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Any discussion of the software resource would be incomplete without recognition of reusability that is , the 
creation and reuse of software building blocks[HOO91].  Such building blocks must be catalogued for easy 
reference, standardized for easy application, and validated for easy integration.  
 
Bennatan [BEN92] suggests four software resource categories that should be considered as planning 
proceeds: 
 
Off-the-shelf components  Existing software that can be acquired from a third party or that has been 
developed internally for a past project.  These components are ready for use on the current project and 
have been fully validated. 
 
Full-experience components.    Existing specifications, designs, code, or test date developed for past 
projects that are similar to the software to be built for the current project.  Members of the current software 
team have had full experience in the application area represented by these components.  Therefore, 
modifications required for full experience components will be relatively low-risk. 
 
Partial-experience components. Existing specifications, designs, code, or test data developed for past 
projects that are related to the software to be built for the current project, but will require substantial 
modification.  Members of the current software team have only limited experience in the application area 
represented by these components.  Therefore, modifications, required for partial experience components 
have a fair degree of risk.  
 
New Components  Software components that must be built by the software team specifically for the needs 
of the current project. 
 
The following guidelines should be considered by the software planner when reusable components are 
specified as a resource. 
 
1. If off-the-shelf components meet project requirements, acquire them.  The cost for acquisition and 

integration of off-the-shelf components will almost always be less than the cost to develop equivalent 
software.  In addition, risk is relatively low. 

2. If full experience components are available the risks associated with modification and integration are 
generally acceptable.  The project plan should reflect the use of these components. 

3. If partial-experience components are available, their use for the current project must be analyzed in 
detail. If extensive modification is required before the components can be properly integrated with 
other elements of the software, proceed carefully.  The cost to modify partial experience components 
can sometimes be greater than the cost to develop new components. 

Ironically, the use of reusable software components is often neglected during planning, only to become a 
paramount concern during the development phase of the software process.  It is far better to specify 
software resource requirements early.  In this way technical evaluation of alternatives can be conducted 
and timely acquisition can occur. 
 

4.9  Environmental Resources 
 
The environment that supports the software project, often called a software engineering environment, 
incorporates hardware and software.  Hardware provides a platform that supports the tools (software) 
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required to produce the work products that are an outcome of good software engineering practice.  
Because most software organizations have multiple constituencies that require access to the SEE, a project 
planner must prescribe the time window required for hardware and software and verify that these 
resources will be available. 
 
When a computer based system ( incorporating specialized hardware and software) is to be engineered, 
the software team may require access to hardware elements begin developed by other engineering teams.  
For example, software for a numerical control (NC) used on a class of machine tools may require a specific 
machine tool(e,g a NC lathe) as part of the validation test step;  a software project for automated 
typesetting may need a photo-typesetter at some point during development.  Each hardware element 
must be specified by the software project planner. 
 

4.10 Short Summary 
 

 The software project planner must estimate three things before a project begins: how long it will take, 
how much effort will be required and how many people will be involved. 

 
 The planner must predict the resources (hardware and software) that will be required and the risk 

involved. 
 

4.11 Brain storm 
 

1. How do you obtain necessary informatin for scope ? 

2. Short Note on Resources ? 

3. Explain about Project Planning Objectives ? 

4. Describe briefly about Reusable Software Resource ? 

5. What is Environmental Resource ? 
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5.1 Snap Shot  
 
In the early days of computing, software costs comprised a small percentage of overall computer based 
system cost. An order of magnitude error in estimates of software cost had relatively little impact. Today, 
software is the most expensive elements in most computer-based systems. A large cost estimation error 
can make the difference between profit and loss.  Cost overrun can be disastrous for the developer. 
 
Software cost and effort estimation will never be an exact science.  Too many variables human Technical, 
Environmental, Political can affect the ultimate cost of  software and effort applied to develop it.  However 
software project estimation can be transformed from a mysterious art to a series of systematic steps that 
provide estimates with acceptable risk. 
 
To achieve reliable cost and effort estimates, a number of options arise. 
 
1. Delay estimation until late in the project ( obviously, we can achieve 100% accurate estimates after the 

project is completed) 
2. Base estimates on similar projects that have already been completed.  
3. use relatively simple “decomposition techniques” to generate project cost and effort estimates. 
4. use one or more empirical models for software cost and effort estimation. 
 
Unfortunately, the first option, however attractive, is not practical.  Cost estimates must be provided “up-
front”.  However, we should recognize that the longer we wait, the more we know, and the more we 
know, the less likely we are to make serious errors in our estimates. 
 
The second option can work reasonably well if the current project is quite similar to past efforts and other 
project influences (e.g the customer, business conditions, the SEE deadlines) are equivalent.  
Unfortunately, past experience has  not always been a good indicator of future results. 
 
The remaining options are viable approaches to software project estimation.  Ideally, the techniques noted 
for each option should be applied in tandeam, each used as a cross-check for the other.  Decomposition 
techniques take a “divide and conquer” approach to software project estimation.  By decomposing a project 
into major functions and related software engineering activities, cost and effort estimation can be 
performed in a stepwise fashion.  Empirical estimation models can be used to complement decomposition 
techniques and offer a potentially valuable estimation approach in their own right.  A model is based on 
experience (historical data) and takes the form. 

d=f(Vi) 
Where d is one of a number of estimated values (e.g. effort, cost, project duration) and Vi are selected 
independent parameters (e.g estimated LOC or FP)  
Automated estimation tools implements one or more decomposition techniques or empirical models.  
When combined with an interactive human machine interface, automated tools provide an attractive 
option for estimating.  In such systems, the characteristics of the development organization (e.g 
experience, environment) and the software to be developed are described.  Cost and effort estimates are 
derived from these data. 
 
Each of the viable software cost estimation options is only as good as the historical data used to seed the 
estimate.  If no historical data exist, costing rests on a very shaky foundation.  
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5.2 Decomposition Techniques 
 
Software project estimation is a form of problem solving, and in most cases, the problem to be solved (i,e, 
developing a cost and effort estimate for a software project)  is too complex to be considered in one piece.  
For this reason we decompose the problem, recharacterizing it as a set of smaller ( and hopefully more 
manageable) problems. 
 
Software Sizing 
 
The accuracy of a software project estimate is predicated on a number of things.  (1) the degree to which 
the planner has properly estimated the size of the product to be built. (2) the ability to translate the size 
estimate into human effort, calendar time, and dollars ( a function of the availability of reliable software 
metrics from past projects)  (3) the degree to which the project plan reflects the abilities of the software 
team; and (4) the stability of product requirements and the environment that supports the software 
engineering effort. 
 
In this section, we consider the software sizing problem.  Because a project estimate is only as good as the 
estimate of the size of the work to be accomplished, sizing represents the project planner’s first major 
challenge.  In the context of project planning, size refers to a quantifiable outcome of the software text of 
project planning.  Size refers to a quantifiable  outcome of the software  project. If a direct approach is 
taken, size can be measured in LOC.  If an indirect  approach is chosen, size is represented as FP. 
 
Putnam  and Myers[PUT92] suggest four different approaches to the sizing problem: 
 
“Fuzzy-Logic” Sizing 
 
This  approach uses the approximate  reasoning techniques that are the cornerstone of fuzzy logic.  To 
apply  this approach, the planner must identify the type of application, establish its magnitude  on a 
qualitative scale, and then refine  the magnitude within the original range.  Although personal experience 
can be used, the planner should also have access to and historical database of projects so that estimates can 
be compared to actual experience. 
 
 
Function Point Sizing 
 
The planner develops estimates of the information domain characteristics discussed  in the previous 
lecture 
 
Standard Component Sizing 
 
Software is composed of a number of different  “standard component” that are generic to a particular 
application area.  For example, the standard components for an information system are  subsystems, 
modules, screens, reports, interactive programs, batch programs, files, LOC, and object level instruction.  
The project planner estimates the number of occurrence of each standard component and then uses  
historical project data to determine the  delivered size per standard component.  To illustrate, consider an 
information systems application,  the planner estimates that 18 reports will be generated.  Historical data 
indicates that 967  lines of Cobol are required per report.  This enables the planner to estimate that 17,000 
LOC  will be required for the reports component.  Similar estimates and calculations are made for other 
standard components, and a combined size value results. 
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Change  sizing.   This  approach is used when a project encompasses the use of existing software that 
must be modified in some way as pasrt of  a project.  The planner estimates tha number and type (e.g., 
reuse, adding code, changing code, deleting code)  of modifications that must be accomplished.  Using the  
“effort ratio” for each type of change, the size of the change may be estimated. 
 
Putnam and Myers suggest that the results of each of the sizing approaches noted above be combined 
statistically to create a three point or expected value estimate.  This is accomplished by developing 
optimistic (low), most likely, and pessimistic (high) values for size and combining them using equations 
described in the  next section. 
 

5.3 Problem Based Estimations 
 
Lines of code (LOC) and function points (FP)  were described as basic measures from which productivity 
metrics can be computed.  LOC  and FP  data  are used in  two ways during software project estimation: 
(1)  as an estimation variable that is used  to “size” each element of the software, and (2) as baseline 
metrics collected from past projects and used in conjunction with estimation variables to develop cost and 
effort projections. 
 
LOC  and  FP  estimation are distinct estimation techniques, yet both have a number of characteristics in  
common.  The project planner begins with a  bounded statement of software scope and from this 
statement attempts to decompose software into problem functions that can each be estimated individually.  
LOC  or  FP ( the estimation variable) is  then estimated for each function.  Alternatively, the planner may 
choose another component for sizing such as classes or objects, changes, or business processes impacted. 
Baseline productivity metrics(e.g.,  LOC/pm or FP/pm) are then applied to the appropriate estimation 
variable and cost  or effort for the function is derived.  Function  estimates are combined to produce an 
overall estimate for the entire project. 
 
It is important  to note, however, that there  is often substantial scatter in productivity metrics for an 
organization, making the use of a single baseline productivity metric suspect.  In general, LOC/pm or  
FP/pm  averages should be computed  by project domain.  That is, projects should be grouped by team 
size, application area, complexity, and other relevant parameters.  Local domain averages should then be 
computed.  When a new project is estimated, it should first be allocated to a domain, and then  the 
appropriate domain average for productivity should be used in generating the estimate. 
 
The LOC  and FP estimation techniques differ in the level of detail required for decomposition and the 
target of the partitioning.  When  LOC  is used as the estimation variable, decomposition is absolutely 
essential and is often taken to considerable levels of detail.  The greater the degree of partitioning, the 
more likely that reasonably accurate estimates of LOC  can be  developed. 
 
For FP  estimates, decomposition works differently.  Rather than focusing on function, each of the 
information domain characteristics – inputs, outputs, data files, inquiries, and external interfaces – and the 
fourteen complexity adjustment values are estimated. The resultant estimates are used to derive a FP  
value that can be  tied to past data and  used to generate and estimate. 
 
Regardless  of the estimation variable that is used, the project planner begins by estimating a range of 
values for each function or  information domain value.  Using historical data or (when all else fail) 
intuition, the planner estimates  an optimistic, most likely, and pessimistic size value for each function or 
count for each information domain value.  An implicit indication of the degree of uncertainty is provided 
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when a range of values is specified. 
 
A three point or expected value is then computer.  The  expected value for the estimation variable (size) 
EV, can be computed  as a weighted  average of the optimistic(sopt), most likely(S m)   and pessimistic(ppess) 

estimates.  For example, 
 

EV = (sopt+4sm+spess)/6 ----------(5.1) 
Gives heaviest credence to the  “ most likely” estimate and follows a beta probability distribution. 
 
We assume that there is a very small probability that the actual size result will fall outside the optimistic 
or pessimistic values.  Using standard statistical techniques, we can compute the deviation of the 
estimates.  However, it should be noted that a deviation based on uncertain (estimated) data must be used 
judiciously. 
Once the expected value for the estimation variable has been determined, historical  LOC  or  FP  
productivity data are applied.  Are the  estimates correct?  The only reasonable answer to this question is :  
“we can’t be sure”.  Any estimation technique no matter how sophisticated,  must be cross checked with 
another approach.  Even then, common sense and experience must prevail. 
 

5.4  An Example  of LOC Based Estimation   
 
As an example of LOC and FP estimation techniques, let us consider a software package to be developed 
for a computer-aided design (CAD) application for mechanical  components.  A review of the system 
specification indicates that the software is to execute on an engineering workstation and must interface 
with various computer graphics peripherals including a mouse, digitizer, high-resolution color display, 
and laser printer. 
 
Using a system specification as a guide, a preliminary statement of software scope can be developed:  
 
The CAD software will accept two- and three-dimensional geometric data from an engineer. The engineer 
will interact and control  the CAD system through a user interface that will exhibit characteristics of good 
human machine interface design. All geometric data and other supporting information will be maintained 
in a CAD database Design analysis modules will be developed to produce required output which will be 
displayed on a variety of graphics devices. The software will be designed to control and interact with 
peripheral devices that include a mouse, digitizer, and laser printer.  
 
The above statement of scope is preliminary—it is not bounded. Every sentence would have to be 
expanded to provide concrete detail and quantitative bounding. For example, before estimation can begin 
the planner must determine what “characteristics of good human-machine interface design” means or 
what the size and sophistication of the “ CAD database” is to be.  
 
For our purposes, we assume that further refinement has occurred and that the following major software 
functions are identified:    
 
• User interface and control facilities (UICF)  

• Two-dimensional geometric analysis (2DGA) 

• Three-dimensional geometric analysis (3DGA)  

• Database management (DBM)  

• Computer graphics display facilities (CGDF)  
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• Peripheral control (PC) 

• Design analysis modules(DAM) 

Function Estimated LOC 
User interface and control facilities  (UICF)           
Two-dimensional geometric analysis  (2DGA)        
Three-dimensional geometric analysis (3DGA) 
Database management (DBM)   
Computer graphics display facilities (CGDF)   
Peripheral control  (PC)    
Design analysis modules (DAM) 

2,300 
5,300 
6,800 
3,350 
4,950 
2,100 
8,400 

Estimated lines of code  33,200 

 
Figure 5.1 Estimation table of LOC method 
 
Following the three-point estimation technique for LOC  the table shown in Figure 5.1 is developed  For 
example, the range of LOC  estimates for the 3D geometric analysis function is: 
 
Optimistic :   4600 
Most likely :   6900 
Pessimistic :   8600 
 
Applying equation (5.1), the expected value for the 3D geometric analysis function is  6800 LOC.  This 
number is entered in the table  Other estimates are derived; in a similar fashion.  By summing vertically in 
the estimated LOC column, an estimate of 33,200 lines of code is established for the CAD system.   
 
A review of historical data indicates that the orgnizational average productivity for systems of this type is 
620 LOC/pm. Based on a burdened labor rate of $8000  per month the cost per line of code is 
approximately $13.00  Based on the LOC estimate and the historical productivity data, the total estimated 
project cost is $431,000 and the estimated effort is 54 person-months.   
 

5.5 Short Summary 
 

 The statement of scope helps the planner to develop estimates using one or more techniques that fail 
into two broad categories: decomposition and empirical modeling.  

 
 Decomposition Techniques require a delineation of major software functions, followed by estimates 

of either the size or the number of person months required to implement each function.  
 

 Empirical techniques use empirically derived expressions for effort and time to predict these project 
quantities. Automated tools can be used to implement a specific empirical model. . 

 
 Accurate project estimates generally make use of at least two of the three techniques noted above. By 

comparing and reconciling estimates derived using different techniques, the planner is more likely to 
derive an accurate estimate. Software project estimation can never be an exact science, but a 
combination of good historical data and systematic techniques  can improve estimation accuracy.  
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5.6 Brain Storm 
  

1. What is Software Project Estimation ? 

2. Give a Short Note on Decomposition Technique ? 

3. Explain briefly about Problem Based Estimation ? 
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6.1 Snap Shot 
 
In this lecture, we focus on Reactive and Proactive Risk Strategies, Software Risks, Risk Identification and 
Projection, Safety Risks and Hazards and also about RMMM. 
 

6.2  Reactive Vs. Proactive Risk Strategies 
 
Reactive risk strategies have been laughingly called the “Indiana Jones school of risk management”.  In the 
movies that carried his name, Indiana Jones, when faced with overwhelming difficulty, would invariably 
say, “Don’t worry, I’ll think of something!” never worrying about problems until they happened, Indy 
would react in some heroic way. 
  
Sadly, the average software project manager is not Indiana Jones and the members of the software project 
team are not his trusty sidekicks. Yet, the majority of software teams rely solely on reactive risk strategies. 
At best, a reactive strategy monitors the project for likely risks. Resources are set aside to deal with them, 
should they become actual problems. More commonly, the software team does nothing about risks until 
something goes wrong. Then, the team flies into action in an attempt to correct the problem rapidly. This 
is often called “fire fighting mode”. When this fails, “crisis management” takes over and the project is in 
real jeopardy. 
 
A considerably more intelligent strategy for risk management is to be proactive. A proactive strategy 
begins long before technical work is initiated. Potential risks are identified, their probability and impact 
are assessed, and they are prioritized by importance. Then, the software team establishes a plan for 
managing risk. The primary objective is to avoid risk, but because not all risks can be avoided, the team 
works to develop a contingency plan that will enable it to respond in a controlled and effective manner. 
Throughout the remainder of this chapter, discuss a proactive strategy for risk management. 
 

6.3 Software Risks 
 
Although there has been considerable debate about the proper definition for software risk, there is general 
agreement that risk always involves two characteristics 
 

 Uncertainty The event that characterizes the risk may or may not happen; i.e. there are no 100% 
probable risks. 

 
 Loss If the risk becomes a reality, unwanted consequences or losses will occur. 

 
When risks are analyzed, it is important to quantify the level of uncertainty and the degree of loss 
associated with each risk. To accomplish this, different categories of risks are considered. 
Project risks threaten the project plan. That is, if project risks become real, it is likely that the project 
schedule will slip and that costs will increase. Project risks identify potential budgetary, schedule, 
personnel, resource, customer, and requirements problems and their impact on a software project. Project 
complexity, size, and the degree of structural uncertainty were also defined as project risk factors. 
 
Technical risks threaten the quality and timeliness of the software to be produced. If a technical risk 
becomes a reality, implementation may become difficult or impossible. Technical risks identify potential 
design, implementation, interfacing, verification, and maintenance problems. In addition, specification 
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ambiguity, technical uncertainty, technical obsolescence, and “leading-edge” technology are also risk 
factors. Technical risks occur because the problem is harder to solve than we thought it would be. 
  
Business risks threaten the viability of the software to be built. Business risks often jeopardize the project 
or the product. Candidates for the top five business risks are (1) building an excellent product or system 
that no one really wants ; (2) building a product that no longer fits into the overall business strategy for 
the company ; (3) building a product that the sales force doesn’t understand how to sell; (4) losing the 
support of senior management due to a change in focus or a change in people and (5) losing budgetary or 
personnel commitment. It is extremely important to note the simple categorization won’t always work. 
Some risks are simply unpredictable in advance. 
  
Another general categorization of risks has been proposed by Charette [CHA 89]. Known risks are those 
that can be uncovered after careful evaluation of the project plan, the business and technical  environment 
in which  the project is being developed, and other reliable information sources (e.g., unrealistic delivery 
date, lack of documented requirements or software scope, poor development environment).  Predictable 
risks are extrapolated from past project experience (e.g., staff turnover, poor communication with the 
customer, dilution of staff effort as ongoing maintenance requests are serviced).  Unpredictable risks are 
the joker in the deck.  They can and do occur, but they are extremely difficult  to identify in advance. 
 

6.4 Risk Identification  
 
Risk identification is a systematic attempt to specify threats to the project plan. By identifying known and 
predictable risks, the project manager takes a first step toward avoiding them when possible and 
controlling them when necessary. 
  
There are two distinct types of risks for each of the categories that are generic risks and product-specific 
risks. Generic risks are a potential threat to every software project. Product-specific risks can only be 
identified by those with a clear understanding of the technology, the people, and the environment that is 
specific to the project at hand. To identify product-specific risks, the project plan and the software 
statement of scope are examined and an answer to the following question is developed: “ what special 
characteristics of this product may threaten our project plan?” 
  
Both generic and product-specific risks should be identified systematically. Tom glib drives this point 
home when he states: “if you don’t actively attack the risks they will actively attack you”. 
  
One method for identifying risks is to create a risk item checklist. The Checklist can be used for risk 
identification and focuses on some subset of known and predictable risks in the following generic 
subcategories. 
  

 Product size – risks associated with the overall size of the software to be built or modified 
 

 Business impact – risk associated with constraints imposed by management or the marketplace 
 

 Customer characteristics – risks associated with the sophistication of the customer and the 
developer’s ability to communicate with the customer in a timely manner. 
 

 Process definition- risks associated with the degree to which the software process has been defined 
and is followed by the development organization. 
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 Development environment – risks associated with the availability and quality of the tools to be used 

to build the product. 
 

 Technology to be built – risks associated with the complexity of the system to be built and the 
“newness” of the technology that is packaged by the system. 
 

 Staff size and experience – risks associated with the overall technical and project experience of the 
software engineers who will do the wok. 

 
The risk item checklist can be organized in different ways. Questions relevant to each of the topics noted 
above can be answered for each software project. The answers to these questions allow the planner to 
estimate the impact of risk. A different risk item checklist format simply lists characteristics that are 
relevant to each generic subcategory. Finally, asset of “risk components and drivers” are listed along with 
their probability of occurrence. Drivers for performance, support, cost, and schedule are discussed in 
answer to later questions. 
 
Product size Risks 
  
Few experienced managers would debate the following statement: Project risk is directly proportional to 
product size. The following risk item checklist identifies generic risks associated with product size: 
 

 Estimated size of the product in LOC or FP? 
 Degree of confidence in estimated size estimate? 
 Estimated size of product in number of programs, files, and transactions? 
 Percentage deviation in size of product from average for previous products? 
  Size of database created or used by the product? 
 Number of users of the product? 
 Number of projected changes to the requirements for the product? Before delivery? After delivery? 
 Amount of reused software? 

 
In each case, the information for the product to the developed must be compared to past experience. If a 
large percentage deviation occurs or if numbers are similar, but past results were considerably less than 
satisfactory, risk is high. 
 
Business Impact Risks 
 
An engineering manager at a major software company placed the following framed plaque on his wall:  
“god grant me brains to be a good project manager and the common sense to run like hell whenever 
marketing sets project deadlines!”. The marketing department is driven by business considerations, and 
business considerations sometimes come into direct conflict with technical realities. The following risk 
item checklist identifies generic risks associated with business impact: 
 
• Effect of this product on company revenue? 
• Visibility of this product to senior management? 
• Reasonableness of delivery deadline? 
• Number of customers who will use this product and the consistency of their needs relative to the 

product? 
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• Number of other products/systems with which this product must be interoperable? 
• Sophistication of end users? 
• Amount and quality of product documentation that must be produced and delivered to the customer? 
• Governmental constraints on the construction of the product? 
• Costs associated with late delivery? 
• Costs associated with a defective product? 
 
Each response for the product to be developed must be compared to past experience. If a large percentage 
deviation occurs or if numbers are similar, but past results were considerably less than satisfactory, risk is 
high. 
 
Customer Related Risks 
 
All customers are not created equal. Pressman and Herron discuss this issue when they state.   
 
Customers have different needs. Some know what they want ; others know what they don’t want.  Some   
know what they want others know what they don’t want.  Some customers are willing to sweat the 
details, while others are satisfied with a vague promises. 
 
Customers have different personalities.  Some enjoy being customers-the tension, the negotiation, the 
psychological rewards of a good product.  Others would prefer not to be customers at all.  Some will 
happily accept almost any thing that is delivered and make the very best of a poor product.  Others will 
complain bitterly when quality is lacking, some will show their appreciation when quality is good a few 
will complain no matter what. 
 
Customers also have varied associations with their suppliers.  Some know the product and producer well. 
Others may be faceless, communicating with the producer only by written correspondence and a few 
hurried telephone calls. 
 
Customers are often contradictory.  They want everything yesterday for free.  Often, the producer is 
caught among the customer’s own contradictions. 
 
A bad customer can have a profound impact on a software team’s ability to complete a project on time and 
within budget.  A bad customer represents a significant threat to the project plan and a substantial risk for 
the project manager.  The following risk item checklist identifies generic risk associated with different 
customers. 
 
• Have you worked with the customer in the past ? 
• Does the customer have a solid idea of what is required? Has the customer spent the time to write it 

down? 
• Will the customer agree to spend time in formal requirements gathering meetings to identify project 

scope? 
• Is the customer willing to participate in reviews? 
• Is the customer technically sophisticated in the product area? 
• Is the customer willing to let your people do their job that is, will the customer resist looking over 

your shoulder during technically detailed work? 
• Does the customer understand the software process? 
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If the answer to any of these questions is “no” further investigation  should be undertaken to assess  risk 
potential. 
 
Process Risks. 
 
 If the software process is ill defined if analysis design, and testing are conducted in an ad hoc fashion if 
quality is a concept that everyone agrees is important, but no one acts to achieve in any tangible way, then 
the project is at risk.  The following questions are extracted from a workshop on the assessment of 
software engineering practice developed by R.S. Pressman & Associates, Inc [PRE 95].  The questions 
themselves have been adapted from the Software engineering Institute software process assessment 
questionnaire. 
 
• Does your senior management support a written policy statement that emphasizes the importance of 

standard process for software development. 

• Has your organization developed a written description of the software process to be used on this 
project. 

• Are staff members signed up to the software process as it is documented and willing to use it. 

• Is the software process used for other projects? 

• Has your organization developed or acquired a series of software engineering training courses for 
managers and technical staff? 

• Are published software engineering standards provided for every software developer and software 
manager? 

• Have document outlines and examples been developed for all deliverable defined as part of the 
software process? 

• Are formal technical reviews of the requirements specification, design, and code conducted regularly? 

• Are formal technical reviews of test procedures and test cases conducted regularly? 

• Are the results of each formal technical review documented, including errors found and resources 
used? 

• Is there some mechanism for ensuring that work conducted on a project conforms to software 
engineering standards? 

• Is configuration management used to maintain consistency among system/software requirements, 
design, code and test cases? 

• Is a mechanism used for controlling changes to customer requirements that impact the software? 

• Is there a documented statement of work, a software requirements specification, and a software 
development plan for each subcontract? 

• Is a procedure followed for tracking and reviewing the performance of subcontractors? 

Technical Issues 
 
• Are facilitated application specification techniques used to aid in communication between the 

customer and developer? 

• Are specific methods used for software analysis? 

• Do you use a specific method for data and architectural design? 

• Is more that 90 percent of your code written in a high-order language? 

• Are specific conventions for code documentation defined and used? 
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• Do you use specific methods for test case design? 

• Are software tools used to support planning and tracking activities? 

• Are configuration management software tools used to control and track change activity throughout 
the software process? 

• Are software tools used to support the software analysis and design process? 

• Are tools used to create software prototypes? 

• Are software tools used to support the testing process? 

• Are software tools used to support the production and management of documentation? 

• Are quality metrics collected for all software projects? 

• Are productivity metrics collected for all software projects? 

 
If a majority of the above questions are answered “no”, software process is weak and risk is high. 
 
Technology Risk 
 
Pushing the limits of the technology is challenging and exciting. It’s the dream of almost every technical 
person, because it forces a practitioner to use his or her skills to the fullest. But it’s also very risky. 
Murphy’s law seems to hold sway in this part of the development universe, making it extremely difficult 
to foresee risks, mush less plan for them. The following risk item checklist identifies generic risks 
associated with the technology to be built: 

 
• Do the customer’s requirements demand the creation of new algorithms or input or output 

technology? 

• Does the software interface with new or proven hardware? 

• Does the software to be built interface with vendor supplied software products that are unproven? 

• Does the software to be built interface with a database system whose function and performance have 
not been proven in this application area? 

• Is a specialized user interface demanded by product requirements? 

• Do requirements for the product demand the creation of program components that are unlike any 
previously developed by your organization? 

• Do requirements demand the use of new analysis, design, or testing methods? 

• Do requirements demand the use of unconventional software development methods such as formal 
methods, AI-based approaches, and artificial neural networks? 

• Do requirements put excessive performance constraints on the product? 

• Is the customer uncertain that the functionality requested is “doable”? 

 
If the answer to any of these questions is “yes” further investigation should be undertaken to assess risk 
potential. 
 
Development Environment Risks 
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If a carpenter were asked to create a fine piece of furniture with a bent, dull handsaw, the quality of the 
end product would be suspect. Inappropriate or in-effective tools can blunt the efforts of even a skilled 
practitioner. The software engineering environment supports the project team, the process, and the 
product. But if the environment is flawed, it can be the source of significant risk. The following risk item 
checklist identifies generic risks associated with the development environment. 

 
• Is a software project management tool available? 
• Is a software process management tool available? 
• Are tools for analysis and design available? 
• Do analysis and design tools deliver methods that are appropriate for the product to be built? 
• Are compilers or code generators available and appropriate for the product to be built? 
• Are testing tools available and appropriate for the product to be built? 
• Are software configuration management tools available? 
• Does the environment make use of a database or repository? 
• Are all software tools integrated with one another? 
• Have members of the project team received training in each of the tools? 
• Are local experts available to answer questions about the tools? 
• Is on-line help and documentation for the tools adequate? 

 
If a majority of the above questions are answered “no”, the software development environment is weak 
and risk is high 
Risks associated with staff size and experience 
 
Boehm [ BOE 89] suggests the following questions to assess risks associated with staff size and experience: 
• Are the best people available? 

• Do the people have the right combination of skills? 

• Are enough people available? 

• Are  staff committed for entire duration of the project? 

• Will some project staff be working only part time on this project? 

• Does staff have the right expectations about the job at hand? 

• Has staff received necessary training? 

• Will turnover among staff be low enough to allow continuity? 

 
If  the answer to any of these questions is “ no” further investigation should be undertaken to assess risk 
potential. 
 
Risk Components and Drivers. 
 
The U.S. Air Force has written a pamphlet that contains excellent guidelines for software risk 
identification and abatement.  The Air force approach requires that the project manager identify the risk 
drivers that affect software risk components performance cost, support, and schedule.  In the context of 
this discussion, the risk components are defined in the following manner. 
 
• Performance risk the degree of uncertainty that the product will meet its requirements and be fit for 

its intended use 

• Cost risk the degree of uncertainty that the project budget will be maintained 

• Support risk the degree of uncertainty that the software will be easy to correct, adapt, and enhance 
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• Schedule risk the degree of uncertainty that the project schedule will be maintained and that the 
product will be delivered on time 

 
The impact of each risk driver on the risk component is divided into one of four impact categories 
negligible marginal, critical, and catastrophic.  Indicates the potential consequences of errors or a failure to 
achieve a desired outcome.  The impact category is chosen based on the characterization that best fits the 
description in the table. 
 

6.5 Risk Projection 
 
Risk projection, also called risk estimation, attempts to rate each risk in two ways the likelihood or 
probability that the risk is real and the consequences of the problems associated with the risk, should it 
occur.  The project planner, along with other managers and technical staff, performs four risk projection 
activities:  (1) establish a scale that reflects the perceived likelihood if a risk ; (2) delineate the 
consequences of the risk (3) estimate the impact of the risk on the project and the product and (4) note the 
overall accuracy of the risk projection so that there will be no misunderstandings. 
 

 COMPONENTS 
 
 
 
 
CATEGORY 

 
 

PERFORMANCE 
SUPPORT 

 
 

SUPPORT 

 
 

COST 

 
 

SCHEDULE 
 
 

1 Failure to meet the requirement 
would result in mission failure 

Failure results inincreased costs and 
schedule delays with expected values 
in excess of $500K 
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nonachievement 
of technical 
performance 

Nonresponsive 
or unsupportable 
software 

Significant 
financial 
shortages, budget 
overrun likely 
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delivery date 

1 Failure to meet the requirement 
would degrade system performance 
to a point where mission success is 
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1 Failure to meet the requirement 
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secondary mission 

Costs, impacts, and/or recoverable 
schedule slips with expected value of 
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1 Failure to meet the requirement 
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Error results in minor cost and/or 
schedule impact with expected value 
of less than $1K 
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Figure 6.1 Impacet assessment (BOE89) 
 
A project team begins by listing all risks ( no matter how remote) in the first column of the table.  Each risk 
is categorized in the second column (e.g. implies a project size risk, BU implies a business risk).  The 
probability of occurrence of each risk is entered in the next column of the table.  The probability value for 
each risk can be estimated by team members individually.  Individual values are averaged to develop a 
single consensus probability.  Next the impact of each risk is assessed.  Each risk component is assessed 
using the characterization presented in and an impact category is determined.  The categories for each of 
the four risk components performance, support, cost, and schedule are averaged to determine and overall 
impact value. 
 

Risk  Category  Probability  Impact  RMMM 
Size estimate may be significantly low 
Larger number of users than planned 
Less reuse than planned 
End users resist system 
Delivery deadline will be tightened  
Funding will be lost 
Customer will change requirements 
Technology will not meet expectations 
Lack of training on tools 
Staff inexperienced 
Staff turnover will be high 

 
 
 
 

PS 
PS 
PS 
BU 
BU 
CU 
PS 
TE 
DE 
ST 
ST 

60% 
30% 
70% 
40% 
50% 
40% 
80% 
30% 
80% 
30% 
60% 

2 
3 
2 
3 
2 
1 
2 
1 
3 
2 
2 

 

Impact values. 
 
1. -  Catastrophic  2.  -  Critical 3. -  Marginal 4. -  Negligible 
 
Figure 6.2 Sample risk table prior to sorting 
 
Once the first four columns if the risk table have been completed, the table is sorted by probability and by 
impact.  High-probability, high impact risks percolate to the top of the table, and low probability risks 
drop to the bottom.  This accomplished first order risk prioritization. 
 
The project manager studies the resultant sorted table and defines a cut off line.  The cut off line (drawn 
horizontally at some point in the table)  implies that only risks which lie above the line will be given 
further attention.  Risks that fall below the line are re-evaluated to accomplish second order prioritization. 
Risk impact and probability  have a distinct influence on management concern.  A risk factor that has a 
high impact but a very low probability of occurrence should not  absorb a significant amount of 
management time.  However, high impact risk with moderate to high probability and low impact risk 
with high probability should be carried forwared into the management steps that follow. 
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All risks that lie above the cut off line must be managed.  The column labeled RMMM contains a pointer 
into a Risk Mitigation, Monitoring and Management Plan developed for all risk that lie above cut off. 
 

Figure 6.3   risk and management  concern 
 
Risk probability can be determined by making individual estimates and then developing a single 
consensus value.  Although that approach is workable, more sophisticated techniques for determining risk 
probability have been developed.  Risk drivers can be assessed on a qualitative probability scale that has 
the following values, impossible, improbable, probable, and frequent.  Mathematical probability can then 
be associated with each qualitative value ( e.g. probability of 0.7 to 1.0 implies a highly probable risk) 
 
Assessing Risk Impact 
 
Three factors affect the consequences that are likely  if a risk does occur its nature, its scope and its timing.  
The nature of the risk indicates the problems that are likely if it occurs.  For example, a poorly defined 
external interface to customer hardware ( a technical risk) will preclude early design and testing and will 
likely lead to system integration problems late in a project.  The scope of a risk combines the severity ( just 
how serious is it ?)  with its overall distribution how much of the project will be affected or how  many 
customers are harmed.  Finally the timing of a risk considers when and for how long the impact will be 
felt.  In most cases, a project manager might want the “bad news”   to occur as soon as possible but in 
some cases, the longer the delay, the better. 
 
Returning once more to the risk analysis approach proposed by the U.S Air Force the following steps are 
recommended to determine the overall consequences of a risk. 
 
1. Determine the average probability of occurrence value for each risk component. 
2. Using determine the impact for each component  based on the criteria shown. 
3. Complete the risk table and analyze the results as described in the preceding sections. 
 
The risk projection and analysis techniques applied iteratively as the software project proceeds.  The 
project team should revisit the risk table at regular intervals, re-evaluating each risk to determine when 
new circumstances, cause its probability and impact to change.  As a consequence of this activity, it may 
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be necessary to add new risks to the table, remove some risks that are no longer relevant, and change the 
relative  positioning of still others. 
 
Risk Assessment 
 
At this point in the risk management process, we have established a set of triplets of the form [CHA 89] 

[ri,li,xi] 
where ri, is risk, li, is the likelihood (probability)  of the risk, and xi, is the impact of the risk.  During risk 
assessment, we further examine the accuracy of the estimates that were made during risk projection, 
attempt to prioritize the risks that have been uncovered, and begin thinking about ways to control and/ or 
avert risks that are likely to occur. 
 
For assessment to be useful, a risk referent level [CHA 89] must be defined.  For most software projects, 
the risk components discussed earlier performance, cost, support and schedule also represent risk referent 
levels.  That is, there is a level for performance degradation cost overrun, support difficulty, or schedule 
slippage ( or  any combination of the four)  that will cause the project to be terminated.  If a combination of 
risks create problems that cause one or more of these referent levels to be exceeded, work will stop.  In the 
context of software risk analysis, a risk referent level has a single point, called the referent point or break 
point, at which the decision to proceed with the project or terminate it ( problems are just too great) are 
equally acceptable. 
 
Represents this situation graphically.  If a combination of risks leads to problems that cause cost and 
schedule overruns, there will be a level, represented by the curve in the figure, that (when exceeded)  will 
cause project termination ( the shaded region).  At a referent point, the decisions to proceed or to 
terminate are equally weighted. 
In reality the referent level can rarely be represented as a smooth line on a graph.  In most cases it is a 
region in which there are areas of uncertainty ( i,e, attempting to predict a management decision based on 
the combination of referent values is often impossible) 

Figure 6.4  Risk referent level 
 
Therefore, during risk assessment, we perform the following steps. 
 
1. Define the risk referent levels for the project 

2. Attempt to develop a relationship between each [ri,li, xi] and each of the referent levels. 
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3. Predict the set of referent points that define a region of termination, bounded by a curve or areas of 
uncertainty. 

4. Try to predict how compound combinations of risks will affect a referent level 

 
A detailed discussion is best left to books that are dedicated to risk analysis (e.g. [CHA89,], [ROW 88]. 
 

6.6 Risk Mitigation, Monitoring and Management 
 
All of the risk analysis  activities presented to this point have a single goal to assist the project team in 
developing a strategy for dealing with risk.  An effective strategy must consider three issues: 
 
• Risk avoidance. 
• Risk monitoring, and 
• Risk management and contingency planning 
 
If a software team adopts a proactive approach to risk avoidance is always to best strategy.  This is 
achieved by developing a plan for risk mitigation.  For example, assume that high staff turnover is noted 
as a project risk, r1,.  Based on past history and management intuition, the likelihood, l1, of high turnover 
is estimated to be .70 and impact, x1 is projected to have a critical impact on project cost and schedule. 
 
To mitigate this risk, project management must develop a strategy for  reducing turnover.  Among the 
possible steps to be taken are these: 
 
• Meet with current staff to determine caused for turnover (E.g. poor working conditions, low pay, 

competitive job market)  
• Act to mitigate those causes that are under management control before the project starts. 
• Once project commences, assume turnover will occur and develop techniques to ensure continuity 

when people leave 
• Organize project teams so that information about each development activity is widely dispersed . 
• Define documentation standards and establish mechanisms to be sure that documents are developed 

in a timely manner 
• Conduct peer reviews of all work so that more than one person is familiar with the work 
• Define a backup staff member for every critical technologist. 
 
As the project proceeds, risk monitoring activities commence.  The project manager monitors factors that 
may provide an indication of whether the risk is becoming more or less likely.  In the case of high staff 
turnover, the following  factors can be monitored: 
 
In addition to monitoring the factors noted above, the project manager should also monitor the 
effectiveness of risk mitigation step.  For example, a risk mitigation step noted above called for the 
definition of “documentation standards and mechanisms to be sure that documents are developed in a 
standards and mechanisms to be sure that documents are developed in a timely manner”.  This is one 
mechanism for ensuring  continuity, should a critical individual leave the project.  The project manager 
should monitor documents carefully to ensure that each can stand on its own and that each imparts 
information  that would be necessary if a newcomer were force to join the project. 
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Risk management and contingency planning assumes that mitigation efforts have failed and that the risk 
has become a reality.  Continuing  the example, suppose that the project is well underway and a number 
of people announce that they will be leaving.  If the mitigation strategy has been followed, backup is 
available, information is documented, and knowledge has been dispersed across the team.  In addition, 
the project manager may temporarily refocus resources to those functions that are fully staffed, enabling 
newcomers who must be added to the team to “get up to speed”.  Those individuals who are leaving are 
asked to stop all work and spend their last weeks in  “knowledge transfer mode”.  This include video 
based knowledge capture, the development of “commentary documents” and/or meeting with other team 
members who will remain on the project. 
 
It is important to note that  RMMM steps incur additional project cost.  For example,  spending the time to  
“back up” every critical technologist cost accrued by the  RMMM steps are outweighed by the costs 
associated with implementing them.  In essence, the project  planner performs a classic cost benefit 
analysis.  If risk aversion steps for high turnover will increase project cost and duration by an estimated 15 
percent, but the predominant cost factor is “backup”, management may decide not to implement this step.  
On the other hand if the risk aversion steps are projected to increase costs by 5 percent and duration by 
only 3 percent, management will likely put all into place. 
  
For a large project, 30 or 40 risks may be identified. If between three and seven risk management steps are 
identified for each, risk management may become a project in itself. For this reason, we adapt the Pareto 
80-20 rule to software risk. Experience indicates that 80 percent of the overall project risk can be accounted 
for by only 20 percent of the identified risks. The work performed during earlier risk analysis steps will 
help the planner to determine which of the risks reside in that 20 percent. For this reason some of the risks 
identified, assessed and projected may not make it into the RMMM plan-they don’t comprise the critical 
20 percent (the risks with highest project priority). 
 

6.7 Safety Risks and Hazards 
 
Risk is not limited to the software project itself. Risks can occur after the software has been successfully 
developed and delivered to the customer. These risks are typically associated with the consequences of 
software failure in the field. 
 
Although the probability of failure of a well-engineered system is small an undetected fault in a computer-
based control or monitoring system could resulting enormous economic damage or worse, significant 
human injury or loss of life. But the cost and monitoring often outweigh the risk. Today computer 
hardware and software are used regularly to control safety-critical systems. 
 
When software is used as part of the control system complexity can increase by an order of magnitude or 
more. Subtle design flaws induced by human error— Something that can be uncovered and eliminated in 
hardware based conventional controls become much more difficult to uncover when software is used 
 
Software safety and hazard analysis are software quality assurance activities that focus on the 
identification and assessment of potential hazards that may impact software negatively and cause an 
entire system to fail. If hazards can be identified early in the software engineering process, software design 
features can be specified that will either eliminate or control potential hazards. 
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6.8 Short Summary 
 

• when ever  a lot is riding on a software project, common  sense dictates risk analysis.  And yet, most  
software project managers do it informally and superficially, if they do it at all.  The time spent 
identifying, analyzing, and managing risk pays itself back in  many ways:  less upheaval during  the 
project; a greater ability to track and control a  project; and the confidence that comes with planning 
for problems before they occur. 

 
• Risk analysis can absorb a significant amount of project planning effort.  Identification, projection, 

assessment, management, and monitoring all take time.  But the effort is worth it.  To  quote Sun Tzu, 
a Chinese general  who lived 2500 years ago,  “if you know the enemy and know yourself, you need 
not fear the  result of a hundred battles”.  For the software project manager, the enemy  is risk. 

 
6.9  Brain Storm 

 
1. Explain briefly about Software Risks ? 

2. What is Risk Identification ? Give a brief note on Risk Identification ? 

3. How do you develop a Risk Table ? 

4. Expalin briefly about RMMM ? 
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Lecture 7 
 
 
 
 
 

Project Scheduling and 
Tracking - I 

 
 
 
 
 

 

Objectives 

In this lecture you will 
learn the following 

 
 Basic Concepts 

 About  The Relationship between People and Effort 

 Defining a task set for the Software Project 
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7.1 Snap Shot  
 
Although there are many resons why software is delilvered late, most can be traced to one or more of the 
following root causes. 
 

 An unrealistic deadline established by someone outside the software engineering group and forced 
on managers and practitioners within the group.  

 Changing customer requirements that are not reflected in schedule changes.  

 An honest underestimate of the amount of effort and/or  the number of resources that will be 
required to do the job.  

 Predictable and/or unpredictable risks that were not considered when the project commenced 

 Technical difficulties that could not have been foreseen in advance.   

 Human difficulties that could not have been foreseen in advance.  

 Miscommunication among project staff that results in delays.  

 A failure by project management to recognize that the project is falling behind schedule and a lack of 
action to correct the problem.  

 
Aggressive deadlines are a fact of life in the software business.  Sometimes such deadlilnes are demanded 
for reasons that are legitimate from the point of view of the person who sets the deadline, but common 
sense says that legitimacy must also be perceived by the people doing the work. 
 
7. 1.1.Comments on “ Lateness” 
 
The scheduling techniques described in this lecture, are  often implemented under the constraint of a 
defined deadline.  If best estimates indicate that the deadline is unrealistic, a compotent project manager   
should “ protect his or her team from undue pressure reflect the pressure back to its originators”. 
 
To illustrate, assume that a software development group has been asked to build a real time controller for 
a medical diagnostic instrument that is to be inbtroduced to the market in 9 months.  After careful 
estimation and risk analysis the software project  manager comes to the conclusion that the software as 
requested, will require 14 calendar months to create with available staff.  How does the project manager 
proceed? 
 
It is unrealistic to march into the customer’s office and demand that the delivery date be changed.  
Esternal market pressures have dictated the date, and the product must be released.  It is equally 
foolhardy to refuse to undertake the work .  So, what to do? 
The following steps are recommended in this situation: 
 
1. Perform a detailed estimate using data from past projects.  Determine the estimated effort and 

duration  for the project. 
 
2. Using an incremental process model develop  a development strategy that will deliver critical 

functionality by the imposed deadline, but delay other functionality until later.  Document the plan. 
 

3. Meet with the customer and explain why the imposed deadline is unrealistic.  Be certain to note that 
all estimate are based on performance on past projects.  Also be certain to indicate the percentage 
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improvement that would be required to achieve the deadline as it currently exists.  The following 
comment is appropriate:  

 
“ I thing we may  have a problem with the delivery date for the XYZ controller software.  I’ve given each 
of you an abbreviated breakdown of production rates for past  projects and an estimate that we’ve done a 
number of different ways.  You’ll note that  I’ve assumed a 20 percent improvement in past production 
rates, but we still get a delivery date that’s 14 calendar months rather than 9 months away”. 
 
4. Offer the incremental development strategy  as an alternative. 
  
“we have a few options, and I’d  like you to make a decision based on them.  First, we can increase the 
budget and bring on additional resources so that we’ll have a shot at getting  this job done in nine months.  
But understand that this will increase  risk of poor quality due to the tight time line.  Second, we can 
remove a number of the software functions and capabilities that you’re requesting.  This will make the 
preliminary version of the product somewhat less functionality and then deliver over the 14 month 
period.  Third, we can dispense with reality and wish the project complete in 9 months.  We’ll wind up 
with nothing that can be delivered to a customer.  The third option,  I hope you will agree, is unacceptable.  
Past history and our best estimates say that it is unrealistic and a recipe for disaster”. 
 
There will be some grumbling but if solid estimates based on good historical data are presented, it’s likely 
that negotiated versions of either option 1 or option 2 will be chosen.  The unrealistic deadline evaporates. 
 
7.1.2 Basic principles 
 
The reality of a technical project is that hundreds of small tasks must occur to accomplish a larger goal.  
Some of these tasks lie outside the mainstream and may be completed without worry  about impact on 
project completion date.  Other  tasks lie on the “Critical path.”  If these “critical“  tasks fall behind 
schedule, the completion date of the entire project is put into jeopardy. 
The project manager’s objective is to define all project tasks, identify the ones that are critical,  and then 
track their progress to ensure that delay is recognized “one day at a time”.   To  accomplish this, the 
manager must have a schedule that has been defined at a degree of resolution that enables  the manager to 
monitor progress and control the project. 
 
Software project scheduling is an activity that distributes estimated effort across  the planned project 
duration by allocating the effort to specific software engineering tasks.  It is important to note, however, 
that the schedule evolves  over time.  During early stages of project planning, a macroscopic schedule is 
developed.  This type of schedule identifies all major software engineering activities and the product 
functions to which they are applied.  As the project gets under way, each entry on the macroscopic 
schedule is refined into a detailed schedule.  Here, specific software tasks are identified and scheduled. 
 
Scheduling for software development projects can  be viewed from two rather different perspectives.  In 
the first,  an end date for release of a computer based system has already been established.  The software 
organization is constrained to distribute effort with in the prescribed time frame.  The second view of 
software scheduling assumes that rough chronological bounds have been discussed but that the end date 
is set by the software engineering organizatin.  Effort is distributed to make best use of resources, and an 
end date is defined after careful analysis of the software.  Unfortunately the first situation is encountered 
far more frequently than the second. 
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Like all other areas of software engineering, a number of basic principles guide software project 
scheduling: 
 
Compartmentalization The project must compartmentalized into a number of manageable activities and 
tasks.  To accomplish compartmentalization, both the product and the process are decomposed. 
 
Interdependency The interdependencies of each compartmentalized activity or task must be determined. 
Some tasks must occur in sequence; others can occur in parallel.   Some activities cannot commence until 
the work product produced by another is available.  Other activities  can occur independently. 
  
Time Allocation Each  task  to be scheduled must be allocated some number of work units.  In addition, 
each task must assigned a start date and a completion date that are functions of the interdependencies and 
whether work will be conducted on a full time or part time basis. 
 
Effort validation  Every project has a defined number of staff member.  As time allocation occurs, the 
project manager must ensure that no more than the allocated number of people have been allocated at any 
given time.  For example, consider a project that has three assigned staff members.  On a given day, seven  
concurrent tasks must be accomplished.  Each task requires  0.50 person days of effort.  More effort has 
been allocated than there are people to do the work. 
 
Defined responsibilities. Every task that is scheduled should be assigned to a specific team member. 
 
Defined outcomes. Every task that is scheduled should have a defined outcome.  For software projects, 
the outcome is normally a work product or a part of a work product.  Work products are often combined 
in deliverables. 
 
Defined milestones.  Every task or group of tasks should be associated with a project milestone.  A 
milestone is accomplished when one or more work products have been reviewed  for quality and have 
been approved. 
 
Each of the above principles is applied as the project schedule evolves. 
 

7.2  The Relatinship Between People and Effort 
 
In a small software development project a single person can analyze requirements, perform design, 
generate code, and conduct tests.  As the size of a project increases, more people must become involved. 
 
There is a common myth that is still believed by many managers who are responsible for software 
development effort:  “ If we fall the project”,   Unfortunately, adding people late in a project often has a 
disruptive effect, causing schedules to slip even further.  People late in a project often has disruptive effect, 
causing schedules to slip even further.  People who are added must learn the system, and the people who 
teach them are the same people who were doing the work.  While they are teaching,  no work is done and 
the project falls further behind. 
 
In addition to the time it takes to learn the system,  involving more people increases the number of 
communication paths and the complexity of communication  throughout a project. Although 
communication is absolutely essential to successful software development, every  new communication 
path requires additional effort and therefore additional time. 
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An example 
 
Consider four software engineers, each capable of producing 5000  LOC/year when working on an 
individual project.  When these four engineers are placed on a team project,  six potential communication 
paths are possible.  Each communication  path requires time that could otherwise be spent developing  
software.  We shall assume that team productivity will associated with communication.  Therefore, team 
productivity will be reduced  by 250 LOC/year for each communication path, due to the overhead 
associated with communication.  Therefore, team  productivity is 20,000 – ( 250X6) = 18,500 LOC/year – 
7.5  percent less than what we might expect. 
 
The one year project on which the above team is working falls behind schedule and with two months 
remaining, two  additional people are added to the team.  The number of communication paths escalates 
to 14.  The productivity input of the new staff is the equivalent of 840 X2 = 1680 LOC  for the two months 
remaining before delivery.  Team productivity now is 20,000 + 1680 – (250 X14) = 18,180 LOC / year. 
 
Although the above example is a gross oversimplification of real world circumstances, it does serve to 
illustrate another key point;   The relationship between the number of people  working on a software 
project and overall productivity is not linear. 
 
Based on the people – work relationship, are teams counterproductive?  The answer is an emphatic “ no,” 
if communication serves to improve software quality.  In fact, formal technical reviews conducted by 
software engineering teams can lead to better analysis and design, and more important, can reduce the 
number of errors that go undetected until testing.  Hence, productivity and quality, when measured by 
time to project completion and customer satisfaction, can actually improve. 
 
7.2.1 An empirical relationship 
 
Recalling the “ software equation “  that was introduced in the previous lecture.  We can demonstrate the 
highly nonlinear relationship between chronological time to complete a project and human effort applied 
to the project.  The number of delivered lines of code L are related to effort and development time by the 
equation : 
 

L = P X (E/B)  1/3 T 4/3 
 
Where E is development effort in person months ; P  is a productivity  parameter that reflects a variety of 
facators that lead to high quality software engineering work B is a special skill factor that ranges between  
0.16 and 0.39 and is a function of the size of the software  to be produced; and t is the project duration in 
calendar months. 
 
Rearranging the software equation (above),  we arrive at an expression for development effort E. 
 

D =L3/(P3T4) 
 
Where E is the effort expended over the entire life cycle for software development and maintenance, and T 
is the development time in years.   The equation for development effort can be related to development cost 
by the inclusion of a burdened labor rate factor ($/person-year). 
This leads to some interesting results.  Consider a complex, real time software project estimated at 33,000 
LOC, 12 person years of efforts.  If eight people  are assigned to the project team, the project can be 
completed in approximately 1.3 years.  If, however, we extend the end date to 1.75 years the  highly 
nonlinear nature of the model described in equation 7,.1 yields. 
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E= L3/(P3T4) ~3.8 person years. 

 
This implies that by extending the end date six months, we can reduce the number of people from eight to 
four!   The validity of such results is open to debate, but the implication is clear;  Benefit can be gained by 
using fewer people over a somewhat longer time span to accomplish the same objective. 
 
7.2.2 Effort Distribution 
 
Each of the software project estimation techniques  discussed in previous lectue leads to estimates of 
person months required to complete software development.  A recommended distribution of effort across 
the definition and development phases is often referred to as the 40-20-40 rule.  Forty percent or more of 
all effort is allocated to front end analysis and design tasks.  A similar percentage is applied to back end 
testing.  You can correctly infer that coding is de-emphasized. 
 
This effort distribution should be used as a guideline only.  The characteristics of each project dictate the 
distribution of effort.  Effort expended on project planning rarely accounts for more than 2 or 3 percent of 
effort, unless the plan commits and organization to large expenditures with high risk.  Requirements 
analysis may comprise 10 to 25  percent of project effort.  Effort expended on analysis or prototyping 
should increase in direct proportion with  project size and complexity.  A range  of 20 to 25 percent of 
effort is normally applied to software design.  Time expended for design review and subsequent iteration 
must also be considered. 
 
Because  of the effort applied to software design, code  should follow with relatively little difficulty.  A 
range of 15 to 20 percent of overall effort can be achieved.  Testing and subsequent debugging can account 
for 30 to  40 percent of software development effort.  The criticality of the software often dictates the 
amount of testing  that is required.  If software is human rated (i.e., software failure can result in loss of 
life), even higher percentages may  be considered. 
 

7.3 Defining a Task Set for the Software Project 
 
A number of different process models were described in lecture2. These models offer different paradigms 
for software development. Regardless of whether a software team chooses a linear sequential paradigm an 
iterative paradigm an evolutioanry paradigm a concrrent paradigm or soem permutation the process 
model is populated by a set of tasks that enable the software team to define, develop, and ultiamtiely 
maintain computer software. 
 
There is no single set of tasks that is appropriate for all projectss. The set of tasks that would be  
appropritae for a large complex system would likely be perceived as overkill for a small relatively simple 
project. Therefore an effective software process should define a colletion of task sets each designed to meet 
the needs of different types of projects. 
 
A task set is a collection fo softwarte engineering work tasks, milestone and deliverables that must be 
accomplished to complete a particualr project. The task set to be chosen must provide enough discipline to 
achieve high software quality. But at the same time, it must not burden the project team with unnecessary 
work. 
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Task sets are designed to accommodate different type of projectsa dn different degrees fo rigor. Although 
it si difficult ot develop a comprehensive taxonomy, most software organizations encounter projecs of the 
following types : 
 
I. Concept Development Projects. That are initiated to explore some new business concept or 

application of some new technology. 

II. New Application Development Projects That are undertaken as a consequence of a specific customer 
request. 

III. Application Enhancement Projects That occur when existing software undergoes major modification 
to function performance or interfaces that are observable by the end user. 

IV. Application Maintenance Projects That  correct, adapt or extend, existing software in ways that may 
not be immediately obvious to the end user. 

V. Reengineering Projects That are undertaken with the intent of rebuilding an existing (legacy) system 
in whole or in part. 

 
Even within a single project type there are many factors that influence the task set to be chosen. When 
taken in combination these factors provide an indication of the degree of rigor with which the software 
process should be applied. 
 
7.3.1 Degree of Rigor 
 
Even for a project of a particular type the degree of rigor with which the software process is applied may 
vary significantly. The degree of rigor is function of many project characteristics. As an example, small, 
non-business, critical projects can generally be addressed with somewhat less rigor than large complex 
baseline critical applications. It should be noted however that all projects must be conducted in manner 
that results in timely high quality deliverables. Four different degrees of rigor can be defined: 
Casual. All process frame work activities are applied but only a minimum task set is required. In general 
umbrella tasks will be minimized and documentation requirements will be reduced. All basic principles of 
software engineering are still applicable. 
 
Structured. The process framework will be applied for this project . Framework activities and related tasks 
appropriate to the project type will be applied and umbrella activities necessary to ensure high quality 
will be applied. SQA, SCM documentation and measurement tasks will be conducted in a streamlined 
manner. 
 
Strict.  The full process will be applied for this project with a degree of discipline that will ensure high 
quality. All umbrella activities will be applied and robust documentation will be produced. 
 
Quick Reaction. The process framework will be applied for this project but because of an emergency 
situation only those tasks essential to maintaining good quality will be applied  
“Back-filling “ (i.e., developing a complete set of documentation conducting additional reviews) will be 
accomplished after the application/product is delivered to the customer. 
 
The project manager must develop a systematic approach for selecting the degree of rigor that is 
appropriate for a particular project. To accomplish this project adaptation criteria are defined and a task 
set selector value is computed. 
 
7.3.2 Defining Adaptation Criteria 
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Adaptation criteria are used to determine the recommended degree of rigor with which the software 
process should be applied on a project. Eleven adaptation criteria are defined for software projects: 
 
• Size of the project 

• Number of potential users 

• Mission critically  

• Application longevity 

• Stability of requirements 

• Ease of customer/developer communication 

• Maturity of applicable technology  

• Performance constraints 

• Embedded /non embedded characteristics 

• Project staffing 

• Reengineering factors 

Each of the adaptation criteria is assigned a grade that ranges between 1 and 5 where 1 represents a project 
in which a small subset of process tasks are required and over all methodological and documentation of 
requirements are minima l and 5 represents a project in which a complete set of process tasks should be 
applied and overall methodological and documentation requirements are substantial 
 
7.3.3 Computing a Task Set Selector Value 
 
To select the appropriate task set for a project the following steps should be conducted: 
 
1. Review each of the adaptation criteria sin Section 7.3.2 and assign the appropriate grades (1 to 5) 

based on the characteristic of the project. These grades should be entered into Table 7.1 

2. Review the weighting factors assigned to each of the criteria. The value of a weighting factor ranges 
from 0.8 to 1.2 and provides an indication of the relative importance of a particular adaptation 
criterion to the types of software developed within the local environments. If modification are 
required to better reflect local circumstances they should be made. 

3. Multiply the grade entered in Table 7.1 by the weighting factor and by the entry point multiplier for 
the type of project to be undertaken. The entry point multiple user takes on a value of 0 or 1 and 
indicates that relevance of the adaptation criterion to the project type. The result of the product:  
Grade*weighting factor* entry point multiplier 

4. Compute the average of all entries in the “Product” column and place the result in the space marked 
task set selector. This value will be used to help you select the task set that is most appropriate for the 
project. 

 
Adaptation criteria      Grade     Weight  Entry Point Moltiplier                Product 
                      Conc.     N.Dev.   Enhan.     Main.   Reeng.   
Size of project        -----  1.20         0        1           1          1          1 ----- 
No. of users            -----     1.10         0        1           1          1          1 ----- 
Business criticality ----- 1.10 0 1 1 1 1 ----- 
Longevity                -----     0.90         0        1           1          0          0 ----- 
Stability of work -----     1.20         0        1           1          1          1 ----- 
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Ease of communication -----     0.90         1        1           1          1          1 ----- 
Modularity of Tech. ----- 0.90       1        1           0          0          1 ----- 
Performance constraint  -----     0.80         0        1           1          0          1 ----- 
Embedeed/nonembedded ----- 1.20 1 1 1 0 1 ----- 
Project staffing      -----     1.00        1        1           1          1          1 ----- 
Interoperability       -----     1.10         0        1           1          1          1 ----- 
Reengineering factors      -----     1.20         0        0           0          0          1 ----- 
 
Table 7.1 Computing the task set selector 
7.3.4 Interpreting the TSS Value and Selecting the Task Set 
  
Once the task set selector is computed, the following guidelines can be used to select the appropriate task 
set for a project. 
 
Task Set Selector Value  Degree of Rigor 
TSS<1.2    casual 
1.0 <TSS <3.0   structured 
TSS>2.4     strict 
 
The overlap in TSS values from one recommended task set to another is purposeful and is intended to 
illustrate that sharp boundaries are impossible to define when making ask set selections. In the final 
analysis the task set selector value past experience and common sense must all be factored into the choice 
of the task set for a project. 
 
Adaptation criteria      Grade     Weight  Entry Point Moltiplier                Product 
                      Conc.     N.Dev.   Enhan.     Main.   Reeng.   
Size of project        2 1.2 ----- 1 ----- ----- ----- 2.4  
No. of users            3 1.1 ----- 1 ----- ----- ----- 3.3 
Business criticality 4 1.1 ----- 1 ----- ----- ----- 4.4 
Longevity                3 0.9 ----- 1 ----- ----- ----- 2.7 
Stability of work 2 1.2 ----- 1 ----- ----- ----- 2.4 
Ease of communication 2 0.9 ----- 1 ----- ----- ----- 1.8 
Modularity of Tech. 2 0.9 ----- 1 ----- ----- ----- 1.8 
Performance constraint  3 0.8 ----- 1 ----- ----- ----- 2.4 
Embedeed/nonembedded 3 1.2 ----- 1 ----- ----- ----- 3.6 
Project staffing      2 1.0 ----- 1 ----- ----- ----- 2.0 
Interoperability       4 1.1 ----- 1 ----- ----- ----- 4.4 
Reengineering factors     0 1.2 ----- 0 ----- ----- ----- 2.8 
 
Table 7.2 Computing the task set selector – An example 
 
Table 7.2 illustrates how TSS might be computed for a hypothetical project. The project manager selcts the 
grades shown in the “grade” column. The project type is new application development therefore entry 
point multipliers are selected from the “Ndev” column. The entry in the “Product” column is computed 
using 
 
Grade*Weight* New Dev Entry Point Multiplier 
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The value of TSS (computed as the average of all entries in the product column) is 2.8 Using the criteria 
discussed above, the manager has the option of using either the structured or the strict task set. The final 
decision is made once all project factors have been considered. 

7.4 Short Summary 
 

 Schedulilng is the culmination of a planning activity that is a primary component of software project 
management.   

 
 When combined  with estimation methods and risk analysis, scheduling establishes a road map for 

the project manager. 
 

7.5  Brain Storm 
 
1. What is Effort Distribution ? 

2. Define Empirical Relationship ? 

3. What is Degree of Rigor ? 

4. How do you compute a TSS value ? 
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Objectives 

In this lecture you will 
learn the following 

 
 About selecting Software Engineering tasks 

 Defining  a Task Network  

 About Scheduling 
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8.1 Snap Shot  
 
In this lecture we are going to learn about Software Engineering tasks, scheduling, Timeline charts and 
project plan. 
 

8.2 Selecting Software Engineering Tasks 
 
In order to develop a project schedule a task set must be distributed on the project time line. As we noted 
in the previous software project task section the task set will vary depending upon the project type and the 
degree of rigor. Each of the project types described in the previous software project task Section may be 
approached using a process model that is linear sequential iterative (e.g., the prototyping model) or 
evolutionary (e.g., the spiral model).  In Some cases one project type flows smoothly into the next. For 
example concept development projects that succeed often evolve into new application development 
projects. As a new application development project ends an application enhancement project sometimes 
begins. This progression is both natural and predictable and will occur regardless of the process model 
that is adopted by an organization. As an example we consider the major software engineering tasks for 
concept development projects. 
 
Concept development projects are initiated when the potential for some new technology must be 
explored. There is no certainty that the technology will be applicable but a customer believes that potential 
benefit exists. Concept development projects are approached by applying the following major tasks: 
 
Concept Scoping determines the overall scope of the project 
 
Preliminary Concept Planning  establishes the organization’s ability to undertake the work implied by 
the project scope. 
 
Technology risk assessment evaluates the risk associated with the technology to be implemented as part 
of project scope. 
 
Proof of concept demonstrates the viability of a new technology in the software context. 
 
Concept implementation implements the concept representation in a manner that can be reviewed by a 
customer and is used for “marketing” purposes when a concept must be sold to other customers or 
management. 
 
Customer reaction to concept solicits feedback on a new technology concept and targets specific customer 
applications. 
 
A quick scan of these major tasks should yield few surprises. In fact, the flow of software engineering 
tasks for concept development projects is little more than common sense. 
 
The software team must understand what must be done; the team must determine whether there’s anyone 
available to do it; consider the risks associated with the work; prove the technology in some way; and 
implement it in a prototypical manner so that the customer can evaluate it. Finally, if the concept is viable, 
a production version must be produced. 
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It is important to note that concept development tasks are iterative in nature. That is, an actual concept 
development project might approach the above tasks in a number of planned increments, each designed to 
produce a deliverable that can be evaluated by the customer. 
 
If a linear process model flow is chosen. Each of these increments is defined in a repeating sequence. 
During each sequence, umbrella activities are applied; quality is monitored, and at the end of each 
sequence, a deliverable is produced. With each iteration, the deliverable should converge toward the 
defined end product for the concept development stage. If an evolutionary model is chosen, the layout of 
tasks I.1 through I.6 would appear in the previous lecture. Major software engineering tasks for other 
project types can be defined and applied in a similar manner. 
 

8.3  Refinement of Major Tasks 
 
The major tasks described in previous section may be used to define a macroscopic schedule would be 
used to define a task network for the project. 
 

 
Fig 8.1 Concept development tasks in a linear, sequential model 
 
The macroscopic schedule must be refined to create a detailed project schedule. Refinement begins by 
taking each major task and decomposing it into a set of subtasks. 

New Application Development Projects 

Application Enhancement Projects 

Application Maintenance 

Reengineering 

Concept Development 

1.1 Concept scoping 
1.4 Proof of concept 

1.2 Preliminary concept planning 
1.3 Technology risk assessment 

1.5 Concept implementation 

1.6 Customer reaction 
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RELEASE CUSTOMER 
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Figure 8.2 Concept development tasks using an evolutionary model 
 

8.4  Defining a Tasks Network 
 
Individual tasks and subtasks have interdependencies based on their sequence. In addition, when more3 
than one person is involved in a software engineering project. It is likely that development activities and 
tasks will be performed in parallel. When this occurs, concurrent tasks must be coordinated so that they 
will be complete when later tasks require their work product. 
 
A task network is a graphic representation of the task flow for a project. It is sometimes used as the 
mechanism through which task sequence and dependencies are input to an automated project scheduling 
tool. In its simplest form, the task network depicts major software engineering tasks. The following figure 
8.1 shows a schematic task network for a concept development project. 
 
The concurrent nature of software engineering activities leads to a number of important scheduling 
requirements. Because parallel tasks occur asynchronously, the planner must determine intertask 
dependencies to ensure continuous progress toward completion. In addition, the project manager should 
be aware of these tasks that lie on the critical path. That is, tasks that must be completed on schedule if the 
project as a whole is to be completed on schedule.  

Preliminary concept Planning 
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Project Definition 
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It is important to note that the task network shown in figure 8.1 macroscopic. In a detailed task network 
each activity shown in figure 8.1 would be expanded. For example task I.1 would be expanded to show all 
tasks detailed in the refinement. 
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8.5 Scheduling 
 
Scheduling of a software projects does not differ greatly from scheduling of any multitask engineering 
effort. Therefore, generalized project scheduling tools and techniques can be applied to software with little 
modification. 
 
Program evaluation and review technique (PERT) and critical path method (CPM) are two project 
scheduling methods that can be applied to software development. Both techniques are driven by 
information already developed in earlier project planning activities: 
 
• Estimates of effort 
• A decomposition of product function 
• The selection of the appropriate process model 
• The selection of project type and task set 
 
Interdependencies among tasks may be defined using a task network. Tasks, sometimes called the project 
work breakdown structure, are defined for the product as a whole or for individual functions. 
 
Both PERT and CPM provide quantitative tools that allow the software planner to (1) determine the 
critical path- the chain of tasks that determines the duration of the project; (2) establish most likely time 
estimates for individual tasks by applying statistical models; and (3) calculate boundary times that define 
a time “window” for a particular task. 
 
Boundary time calculations can be very useful in software    project scheduling.  Slippage in the design of 
one function, for example, can retard further development of other functions. Riggs describes important 
boundary times that may be discerned from a PERT or CPM network  (1) the earliest time that a task can 
begin when all preceding tasks are completed in the shortest possible time;(2) the latest time for task 
initiation before the minimum project completion time is delayed;(3) the earliest finish-the sum of the 
earliest start and the task duration (4) the latest finish-the latest start time added to task duration and (5) 
the total float the amount of surplus time or leeway allowed in scheduling tasks so that the network 
critical path is maintained on schedule.  Boundary time calculations lead to a determination of critical path 
and provide the manager with a quantitative method for evaluating progress as tasks are completed. 
 
Both PERT and CPM have been implemented in a wide variety of automated tools that are available for 
virtually every personal computer.  Such tools are easy to use and make the scheduling methods described 
above available to every software project manager. 

 
8.6 Timeline Charts 

 
When creating a software project schedule, the planner begins with a set of tasks(the work breakdown 
structure).  If automated tools are used, the work breakdown is input as a task network or task outline.  
Effort, duration and start date are then input for each tasks.  In addition, tasks may be assigned to specific 
individuals. 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 92 

 
Work tasks Week 1 Week 2 Week 3 Week 4 

I.1.1   
Identify need and benefits  
Meet with customers 
Identify needs and project  constraints 
Establish product statement 
Milestone: product statement defined 
I.1.2 
Define desired output/control/input(OCI) 
Scope keyboard functions 
Scope voice input functions 
Scope modes of interaction 
Scope document diagnostics 
Scope other WP functions 
Document OCI 
FTR: Review OCI with customer 
Revise OCI as required; 
Milestone: OCI defined 
I.1.3 
Define the functionality/hehavior 
Define keyboard functions 
Define voice input functions 
Describe modes of interaction 
Describe spell/grammar check 
Describe other WP functions 
FTR: Review OCI definition with customer 
Revise as required  
Milestonre: OCI definition complete 
I.1.4  
Isolate software elements 
Milestone: Software elements defined 
I.1.5  
Research availability of existing software 
Research text editing components 
Research voice input components 
Research file management components 
Research spell/grammar check components 
Milestone: Reusable components identified 
 

                    

 
Figure 8.4 An example timeline chart 

 
As a consequence of this input, a timeline chart, also called a Gantt chart, is generated.  A timeline chart 
can be developed for the entire project.  Alternatively, separate charts can be developed for each project 
function or for each individual working on the project. 
 
Figure 8.4 illustrates the format of a timeline chart.  It depicts a part of a software project schedule that 
emphasizes the concept scoping task for a new work-processing software product.  All project tasks (for 
concept scoping) are listed in the left hand column.  The horizontal bars indicate the during of each task.  
When multiple bars occur at the same time on the calendar, task concurrency is implied.  The diamonds 
indicate milestones. 
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Once the information necessary for the generation of a timeline chart has been input, the majority of 
software project scheduling tools produce project tables a tabular listing of all project tasks, their planned 
and actual start and end dates, and a variety of related information.  Used in conjunction with the timeline 
chart, project tables enable the project manager to track progress. 
 

8.7 Tracking the Schedule 
 
The project schedule provides a road map for a software project manager.  If it has been properly 
developed, the project schedule defines  the tasks and milestones that must be tracked and controlled as 
the project proceeds.  Tracking can be accomplished in a number of different ways. 
 
• Conducting periodic project status meetings in which each team member reports progress and 

problems. 
• Evaluating the results of all reviews conducted throughout the software engineering process 
• Determining whether formal project milestones ( the diamonds shown in figure 8.4) have been 

accomplish by the scheduled date. 
• Comparing actual start date to planned start date for each project task listed in the project table. 
• Meeting informally with practitioners to obtain their subjective assessment of progress to date and 

problems on the horizon. 
 
In reality, all of these tracking techniques are used by experienced project managers. 
 
Control is employed by a software project manager to administer project resource, cope with problems 
and direct project manager to administered project (i.e., the project is on schedule and within budget 
reviews indicate that real progress is being made and milestones are being reached), control is light. But 
when problems occur the project manager must exercise control to reconcile them as quickly as possible. 
After a problem has been diagnosed additional resources may be focused on the problem area: Staff may 
be redeployed or the project schedule can be redefined. 

Work Tasks Planned 
start 

Actual 
start 

Planned 
Complete 

Actual 
complete 

Assigned 
person  

Effort 
allocated 

Notes 

I.1.1 
Identify needs and benefits  
Meet with customers  
Identify needs and project constraints 
Establish product statement 
Milestone: product statement defined 
 
I.1.2 
Defined desired output/control 
  /input (OCI) 
Scope keyboard functions 
Scope voice input functions 
Scope modes of interaction 
Scope document diagnostics 
Scope other WP functions 
Document OCI 
FTR: Review OCI with customer 
Revise OCI as required; 
Milestone: OCI defined 
 
I.1.3 
Define the functionality/behavior 
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Figure 8.5 An example project table 
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When faced with severe deadline pressure experienced project managers sometimes use a project 
scheduling and control technique called time-boxing. The time boxing strategy recognizes that the 
complete product may not be deliverable by the predefined deadline. Therefore  an incremental software 
paradigm is chosen and a schedule is derived for each incremental delivery. 
 
The tasks associated with each increment are then time –boxed . This means that the schedule for each task 
is adjusted by working backward form the delivery date for the increment . A “box” is put around each 
task. When a task hits the boundary of its time-box (plus or minus 10 percent ) work stops and the next 
task begins. 
 
The initial reaction to the time-boxing approach is often negative. “ if the work isn’t finished how can we 
proceed?” The answer lies in the way work is accomplished. By the time that time-box boundary is 
encountered it is likely that 90 percent of the task has been completed. The remaining 10 percent although 
important can (1) be delayed until the next increment for (2) be completed late if required. Rather than 
becoming “stuck” on a task the project proceeds toward the delivery date. 
 

8.8 The Project Plan 
 
Each step in the software engineering process should produce a work product that can be reviewed and 
that can act as a foundation for the steps that follow the Software project plan is produced at the 
culmination of the planning tasks . It provides baseline cost and scheduling information that will be used 
through out the software engineering process. 
 
The software project plan is a relatively brief document that is addressed to a diverse audience. It must (1) 
communicate scope and resources to software management technical staff and the customer; (2) define 
risks and suggest risk management techniques ; (3) define cost and schedule for management review ; (4) 
provide an overall approach to software development for all people associated with the project; and 
(5)outline how quality will be ensured and change will be managed. An outline of the software project 
plan is presented in Figure 8.6 
 
A presentation of cost and schedule will vary with the audience to whom it is addressed. If the plan is 
used only as an internal document, the result of each costing technique can be presented. When the plan is 
disseminated outside the organization a reconciled cost breakdown (combining the results of all costing 
techniques ) is provided. Similarly the degree of detail contained within the schedule section may vary 
with the audience and formality of the plan. 
 
The software project plan need not be a lengthy, complex document. Its purpose is to help establish the 
viability of the software development effort. The plan concentrates on a general statement of what and a 
specific statement of   
                                                                                                                                                                      
I. Introduction 

A. Purpose of Plan  
B. Project Scope and Objectives 

1. Statement of Scope 
2. Major Functions 
3. Performance Issues 
4. Management and Technical Constraints 
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II.  Project Estimates 
A. Historical Data used for Estimates 
B. Estimation Techniques 
C. Estimates of Effort, Cost , Duration 

 
III. Risks Management Strategy 

A. Risk Table 
B. Discussion of Risks to be Managed 
C. RMMM  Plan for each risk: 

1. Risk Mitigation 
2. Risk Monitoring  
3. Risk Management (contingency plans) 

 
IV. Schedule  

A. Project Work Breakdown Structure 
B. Task Network 
C. Timeline Chart (Gantt Chart) 
D. Resource Table 

 
V.  Project  Resources 

A. People  
B. Hardware and Software 
C. Special Resources 

 
VI. Staff  Organization 

A. Team Structure (if applicable) 
B. Management Reporting 

 
VII. Tracking and Control Mechanisms 

A. Quality Assurance and Control 
B. Change Management and Control 

 
VIII. Appendices 
 
Fig 8.6. Software Project Plan 
 
How much and how long. Subsequent steps in the software engineering process will concentrate on 
definition, development and maintenance. 
 

8.9 Short Summary 
 

 Scheduling begins with process decomposition.  The characteristics of the project are used to adapt an 
appropriate task set for the work to be done.   

 
 A task network depicts each engineering task, its dependency on other tasks, and its projected 

duration.  The task network is used to compute  the critical project path, a timeline chart, and a 
variety of project information.   
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 Using the schedule as a guide, the project manager can track and control each step in the software 
engineering process. 

8.10 Brain Storm 
 

1. How do you define a Task Network? 

2. Give a short note on Timeline Charts? 

3. Explain briefly about Tracking the Schedule? 

4. What is Project Plan? 
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Lecture 9 
 
 
 
 
 

Software Quality Assurance - 
I 

 
 
 
 
 

 

Objectives 

In this lecture you will 
learn the following 

 
 About Quality Concepts 

 About Quality Movement 

 About  Software Reviews 
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9.1 Snap Shot  
 
In this lecture, we focus on the Management issues and the process specific activities that eneble a 
software organization ensure that it does the right thing at the right time in the right way.  A quantitative 
discussion of quality is presented in the lecture Technical Metric for software. 
 

9.2 Quality Concept  
 
QUALITY 

The American Heritage Dictionary defines quality as “a characteristic or attribute of something. As an 
attribute of an item, quality refers to measurable characteristics-thing we are able to compare to known 
standards such as length, color, electrical properties, malleability, and so on.  However, software, largely 
an intellectual entity, is more challenging to characterize than physical objects. 
 
Nevertheless, measures of a program’s characteristics do exist. These properties include cyclomatic 
complexity, cohesion, number of function points, lines of code and many others discussed in the lectue 
coming.  When we examine an item based on its measurable characteristics, two kinds of quality may be 
encountered quality of design and quality of conformance.  
 
Quality of design refers to the characteristics that designers specify for an item. The grade of materials, 
tolerances, and performance specifications all contribute to the quality of design.   As higher-graded 
materials are used and tighter tolerances and greater levels of performance are specified, the design 
quality of a product increases, If the product is manufactured according to specifications.  
 
Quality of conformance is the degree to which the design specifications are followed during 
manufacturing. Again the greater the degree of conformance, the higher the level of quality of 
conformance.  
 
In software development quality of design encompasses requirements, specifications, and the design of 
the system. Quality of conformance is an issue focused primarily on implementation. If the 
implementation follows the design and the resulting system meets its requirements and performance 
goals, conformance quality is high 
 
Quality control 
 
Variation control may be equated to quality control. But how do we achieve quality control?   Quality 
control is the series of inspections reviews, and tests used throughout the development cycle to ensure 
that each work product meets the requirements placed upon it,  Quality control includes a feedback loop 
to the process that created the work product. The combination of measurement and feedback allows us to 
tune the process when the work products created fail to meet their specifications. This approach views 
quality control as part of the manufacturing process.  
 
Quality control activities may be fully automated, entirely manual or a combination of automated tools 
and human interaction. A key concept of quality controls is that all work products have defined and 
measurable specifications. To which we may compare the outputs of each process. The feedback loop is 
essential to minimize the defects produced. 
 
Quality Assurance 
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Quality assurance consists of the auditing and reporting functions of management. The goal of quality 
assurance is to provide management with the data necessary to be informed about product quality, 
thereby gaining insight and confidence that product quality is meeting its goals. Of course, if the data 
provided through quality assurance identify problems, it is management’s responsibility to address the 
problems and apply the necessary resources to resolve quality issues . 
 
Cost of Quality 
 
Cost of quality includes all costs incurred in the pursuit of quality or in performing quality related 
activities. Cost of quality studies are conducted to provide a baseline for the current. Cost of quality, to 
identify opportunities for reducing the cost of  quality and ;to provide a normalized basis of comparison.  
The basis of normalization is almost always dollars. Once we have normalized quality costs on a dollar 
basis, we have the necessary data to evaluate where the opportunities lie to improve our processes. 
Furthermore, we can evaluate the affect of changes in dollar-based terms.  
 
Quality costs may be divided into costs associated with prevention, appraisal, and failure. Prevention 
costs include:  
 
• Quality planning  
• Formal technical reviews  
• Test equipment 
• Training 
 
Appraisal costs include activities to gain insight into product condition “first time through” each process.  
Examples of appraisal costs include: 
 
• In-process and inter process inspection  
• Equipment calibration and maintenance  
• Testing 
Failure costs are costs that would disappear if no defects appeared before shipping a product to 
customers. Failure costs may be subdivided into internal failure costs and external failure costs.   Internal 
failure costs are the costs incurred when we detect an error in our product prior to shipment . Internal 
failure costs include:  
 
• Rework  

• Repair 

• Failure mode analysis 

 
External failure costs are the costs associated with defects found after the product has been shipped to the 
customer.   Examples of external failure s costs are: 
 
• Complaint resolution  

• Product return and replacement 

• Help line support 

• Warranty work 

 



Software Quality Assurance - I 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 101 

As expected, the relative costs to find and repair a defect increase dramatically as we go from prevention 
to detection and from internal failure to external failure. Figure 9.1 based on data collected by Boehm 
[BOE81], illustrates this phenomenon.  
 
More recent anecdotal data is reported by Kaplan and his colleagues [KAP95]  and  is based on work at 
IBM’s Rochester development facility:  
 
 
      1000 
 
 

    100 
 
 

  10 
 
 

                      1 
 
 
 
                       Reg        Design       Code           Dev.        System        Field 
                                                                                   Test          Test          Operation 
Fig 9.1 Relative cost of correcting on error 
 
A  total of 7053 hours was spent inspecting 2,00,000 lines of code with the result that 3112 potential defects 
were prevented.  Assuming a programmer cost of $40.00 per hour the total  cost of preventing 3112 defects 
was $282,120 or roughly $91.00 per defect. 
 
Compare these numbers to the cost of defect removal once the product has been shipped to the customer. 
Suppose that there had been no inspections, but that programmers had been extra careful and only one 
defect per 1000 lines of code [significantly better than industry average] escaped into the shipped product. 
That would mean that 200 defects would still have to be fixed in the field.  At an estimated cost of $25.000 
per field fix, the cost would be $5 million or approximately 18 times more expensive than the total cost of 
the defect prevention effect.  
 
It is true that IBM produces software that is used by tens of thousands of  customers and that their costs 
for field fixes may be higher than average. This in no way negates the results noted above. Even if the 
average software organization has field fix costs that are 25 percent of IBM’s ( most have no idea what 
their costs are!),  the cost savings associated with quality control and assurance activities are compelling.  
 

9.3 The Quality Movement 
 
Today senior managers at companies throughout the industrialized world recognize that high product 
quality translates to cost savings and an improved bottom line. However, this was not always the case. 
The quality movement began in the 1940’s with the seminal work of W. Edwards Deming [DEM86] and 
had its first true test in Japan . Using Deming’s ideas as a cornerstone, the Japanese have developed a 
systematic approach to the elimination of the root causes of product defects. Throughout the 1970s and 
1980s their work migrated to the Western world and is sometimes called “total quality management 
(TQM),”  Although terminology differs across different companies and authors, a basic four-step 
progression in normally encountered and forms the foundation of any good TQM  program.  
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The first step is called kaizen and refers to a system of continuous process improvement. The goal of 
kaizen is to develop a process (in  this case, the software process) that is visible, repeatable, and 
measurable.  
 
The second step, invoked only after kaizen has been achieved, is called atarimae hinshitsu.  This step 
examines intangibles that affect the process and works to optimize their impact on the process. For 
example the software process may be affected by high staff turnover, which itself is caused by constant 
reorganizations within a company. It may be that a stable organizational structure could much to improve 
the quality of software. Atarimae hinshitsu would lead management to suggest changes in the way 
reorganization occurs.   
 
While the first two steps focus on the process, the next step called kansei   (translated as “the five senses’) 
concentrates on the user of the product (in this case, software) . In essence by examining the way the user 
applies the product kansei leads to improvement in the product itself, and potentially to the process that 
created it.  
 
Finally a step called miryokuteki hinshitsu  broadens management concern beyond the immediate 
product. This is a business-oriented step that looks for opportunity in related areas that can be identified 
by observing the use of the product in the marketplace. In the software world, miryokuteki hinshitsu 
might be viewed as an attempt to uncover new and profitable products or applications that are an 
outgrowth from an existing computer-based system . 
For most companies kaizen should be of immediate concern. Until a mature software process  has been 
achieved, there is little point in moving to the next steps.  
 

9.4 Software Quality Assurance  
 
Even the most jaded software developers will agree that high-quality software is an important goal.  But 
how do we define quality? A wag once said , “Every program does something right, it just may not be the 
thing that we want it to do”  
 
There have been many definitions of software quality proposed in the literature. For our purposes, 
software quality is defined as:  
 
Conformance to explicitly stated functional and performance requirements, explicitly documented 
development standards and implicit characteristics that are expected of all professionally developed 
software. 
 
There is little question that the above definition could be modified or extended . If fact a definitive 
definition of software quality could be debated endlessly. For the purposes of this book, the above 
definition serves to emphasize three important points:  
 
1. Software requirements are the foundation from which quality is measured. Lack of conformance to 

requirements is lack of quality.  

2. Specified standards define a set of development criteria that guide the manner in which software is 
engineered. If the criteria are not followed, lack of quality will almost surely result.   

3. There is a set of implicit requirements that often goes unmentioned (e.g., the desire for good 
maintainability) . If software conforms to its explicit requirements but fails to meet implicit 
requirements, software quality is suspect. 
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Background issues 
 
Quality assurance is an essential activity for any  business that produces products to be used by others. 
Prior to the twentieth century, quality assurance was the sole responsibility of the craftsperson who built a 
product. The first formal quality assurance and control function was introduced at Bell Labs in 1916 and 
spread rapidly throughout the manufacturing world.  
 
During the early days of computing (the 1950s ) , quality was the sole responsibility of the programmer. 
Standards for quality assurance for software were introduced in military contract software development 
during the 1970s and have spread rapidly into software development in the commercial world [IEE94]  
Extending the definition presented earlier, software quality assurance is a  “planned and systematic 
pattern of actions” [SCH87] that are required to ensure quality in software Today the implication is that 
many different constituencies in an organization have software quality assurance responsibility-software 
engineers, project managers customers, salespeople, and the  individuals who serve within an SQA group 
. 
 
The SQA group serves as the customer’s in-house representative,  That is the people who perform SQA 
must look at the software from the customer’s point of view Does the software adequately meet, the 
quality factors.  Has software development been conducted according to pre-established standards? Have 
technical disciplines properly performed their roles as part of the SQA  group attempts to answer these 
and other questions to ensure that software quality is maintained.  
 
SQA Activities  
 
Software quality assurance is comprised of a variety of tasks associated with two different constituencies-
the software engineers who do technical work and a SQA group that has responsibility for quality 
assurance planning, over sight, record keeping, analysis and reporting.  
 
Software engineers address quality (and perform quality assurance) by applying solid technical methods 
and measures, conducting formal technical reviews, and performing well-planned software testing. 
  
The charter of the SQA group is to assist the software engineering team in achieving a high quality end 
product. The software Engineering Institute [PAU93] recommends a set of SQA activities that address 
quality assuring planning, oversight. Record keeping, analysis, and reporting, It is these activities that are 
performed (or facilitated)  by an independent SQA group. 
 
Prepare a SQA plan for a project. The plan is developed during project planning and is reviewed by all 
interested parties Quality assurance activities performed by the software engineering team and the SQA 
group are governed by the plan. The plan identifies:  
 
• Evaluations to be performed  

• Audits and reviews to be performed  

• Standards that are applicable to the project 

• Procedures for error reporting and tracking 

• Documents to be produced by the SQA group  

• Amount of feedback provided to software project team 
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Participates in the development of the project’s software process description. The software engineering 
team selects a process for the work to be performed.  The SQA group reviews the process description for 
compliance with organizational policy, internal software standards, externally imposed standards (e.g., 
ISO 9001), and other parts of the software project plan.  
 
Reviews software engineering activities to verify compliance with the defined software process. The SQA 
group identifies, documents and tracks deviations from the process and verifies that corrections have been 
made.  
 
Audits designated software work products to verify compliance with those defined as part of the software 
process. The SQA group reviews selected work products, identifies, documents and tracks deviations, 
verifies that corrections have been made and periodically reports the results of its work to the project 
manager.  
 
Ensures that deviations in software work and work products are documented and handled according to a 
documented procedure.  Deviations may be encountered in the project plan, process description, 
applicable standards, or technical work products 
 
Record any noncompliance and reports to senior management.  Noncompliance items are tracked until 
they are resolved.  
 
In addition to these activities the SQA group coordinates the control and management of change and 
helps to collect and analyze software metrics. 
 

9.5 Software Reviews 
 
Software reviews are a “filter” for the software engineering process.  That is reviews are applied at various 
points during Software development and serve to uncover errors that can then be removed. Software 
reviews serve to “purify” the software work products that occur as a result of analysis design, and coding. 
Freedman and Weinberg [FRE90] discuss the need for reviews this way:  
 
Technical work needs reviewing for the same reason that pencils  need erasers: To err is human. The 
second reason we need technical reviews is that although people are good at catching some of their own 
errors, large classes of errors escape the originator more easily than they escape anyone else. The review 
process is, therefore, the answer to the prayer of Robert Burns:  
 
O wad some power the giftie give us  
To see ourselves as other set us  
 
A review-any review-is a way of using the diversity of a group of people to:   
 
1. Point out  needed improvement in the product of single person or team 

2. Confirm those parts of a product in which improvement is either not desired or not needed; and 

3. Achieve technical work of more uniform, or at least more predictable. Quality than can be achieved 
without reviews, in order to make technical work more manageable.  

 
There are many different types of reviews the can be conducted as part of software engineering.  Each has 
its place.  An informal meeting around the coffee machine is a form of review if technical problems are 
discussed. A formal presentation of software design to an audience of customers, management, and 
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technical staff is a form of review. In this book however we focus on the formal technical review-
sometimes called a walkthrough.  
 
A formal technical review is the most effective filter from a quality assurance standpoint Conducted by 
software engineers (and others) for software engineers, the FTR is an effective means for improving 
software quality. 
 
Cost Impact of Software Defects 
 
The IEEE Standard Dictionary of Electrical and Electronics Terms (IEEE Standard 100-1992) defines a 
defect as “a product anomaly. “ The definition for “fault “ in the hardware context can be found in IEEE 
Standard 610.12-1990 ;  
 
(a) A defect in a hardware device or component; for example, a short circuit or broken wire. (b) An 
incorrect step process, or data definition in a computer program. Note This definition is used primarily by 
the fault tolerance discipline.  In common  usage, the terms “error”   and “bug” are used to express this 
meaning See also data-sensitive fault; program-sensitive fault; equivalent faults; fault masking; 
intermittent fault. 
 
Within the context of the software process, the terms “defect” and “fault” are synonymous. Both imply a 
quality problem that is discovered after the software has been released to end users. In earlier chapters we 
used the term “error” to depict a quality problem that is discovered by software engineers (or others) 
before the software is released to the end user.  
 
The primary objective of formal technical reviews is to find errors during  the process so that they do 
become defects after release of the software  The obvious benefit of formal technical reviews is the early 
discovery of errors so that they do not propagate to the next step in the software process.  
 
A number of industry studies (TRW, Nippon Electric, and Mitre Corp., among others) indicate that design 
activities introduce between 50 and 65  percent of all errors (and ultimately, all defects) during the 
software process. However, formal review techniques have been shown to be up to 75 percent effective 
[JON86] in uncovering design flaws. By detecting and removing a large percentage of these errors,  the 
review process substantially reduces the cost of subsequent steps in the development and maintenance 
phases.  
 
To illustrate the cost impact of a early error detection, we  consider a series of relative costs that are based 
on actual cost data collected for large software projects [IBM81] Assume that an error uncovered during 
design will cost 1.0 monetary unit to correct. Relative to this cost, the same error uncovered just before 
testing commences will cost 6.5 units during testing 15 units and after release between 60 and 100 units. 
 
Defect Amplification and Removal 
 
A defect amplification model [IBM81] can be used  to illustrate the generation and detection of errors 
during preliminary design, detail design, and coding steps of the software engineering process. The model 
is illustrated schematically in Figure 9.2 A box represents a software development step. During the step, 
errors may be inadvertently generated. Review may fail to uncover newly generated errors and errors 
from previous steps, resulting in some number of errors that are passed through. In some cases, errors, 
passed through from previous steps are amplified (amplification factor, x) by current work. The box 
subdivisions represent each of these characteristics and the percent efficiency for detecting errors a 
function of the thoroughness of review.  
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Figure 9.3 illustrates a hypothetical example of defect amplification for a software development process in 
which no reviews are conducted. As shown in the figure, each test step is assumed to  uncover and correct 
50 percent of all incoming errors without introducing any new errors (an optimistic assumption) Ten 
preliminary design errors are amplified to 94 errors before testing commences. Twelve latent defects are  
released to the field  Figure 9.4 considers the same conditions except that design and code reviews are 
conducted as part of each development step.  In this case, 10 initial preliminary design errors are 
amplified to 24 errors before testing commences. Only three latent defects exist. By recalling the relative 
costs associated with the discovery and correction of errors overall cost (with and without review for Your 
hypothetical example) can be established . In Table 10.1 it can be seen that total cost for development and 
maintenance when reviews are conducted is 783 cost units When no reviews are conducted total cost is 
2177 units-nearly three times more costly. 
 
To conduct reviews, a developer must expend time and effort and the development organization must 
spend money.  However, the results of the preceding example leave little doubt that we have encountered 
a “pay now or pay  much more later” syndrome. Formal technical reviews (for design and other technical 
activities) provide a demonstrable cost benefit .  They should be conducted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 9.3 Defect amplification no reviews 
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Fig 9.4 Defect amplification –reviews conducted 
 

9.6 Short Summary 
 

 Software quality assurance is an “umbrella activity” that is applied at each step in the software 
process, SQA encompasses procedures for the effective application of methods and tools, formal 
technical reviews, testing strategies and techniques, procedures for change control, procedures for 
assuring compliance to standards, and measurement and reporting mechanisms.  

 
 SQA is complicated by the complex nature of software quality—an attribute of computer programs  

that is defined as “conformance to explicitly and implicitly defined requirements.” But when 
considered more generally, software quality encompasses many different product and process factors 
and related metrics.  

 
9.7  Brain Strom 
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10.1 Snap Shot 
 
In this lecture we are going to learn about the Formal Technical Reviews. Software Reliablility, SQA plan 
and also about ISO9000 Quality standards. 

 
10.2 Formal Technical Reviews 

 
A formal technical review (FTR) is a software quality assurance activity     is performed by software 
engineers.   The objectives of the FTR are (1) to  
 
Development Cost  Comparison 
 

Errors Found Number Cost Unit Total 
Reviews conducted 

During design  22 1.5 33 

Before test  36 6.5 234 

During test  15 15 315 

After release 3 67 201 

783 

No Reviews Conducted 

Before test  22 6.5 143 

During test 82 15 1230 

After release 12 67 804 

2177 

 
Table 10.1 Development cost comparision  
 
Cover errors in function logic, or implementation for any representation of the software; (2) to verify that 
the software under review meets its requirements (3) to ensure that the software has been represented 
according to predefined standards; (4) to achieve software that is developed in a uniform manner; and (5) 
to make projects more manageable. In addition, the FTR serves as a training ground, enabling junior 
engineers to observe different approaches to software analysis, design, and implementation. The FTR also 
serves to promote backup and continuity backup and continuity because a number of people become 
familiar with parts of the software that they may not have otherwise seen.  
 
The FTR  is actually a class of reviews that include walkthroughs, inspections, round-robin reviews, and 
other small group technical assessments of software. Fach ETR is conducted as a meeting and will be 
successful only if it is properly planned, controlled, and attended.   In the paragraphs that, follow, 
guidelines similar to those for a walkthrough [ERE90] , [GIL 93] are presented as a representative formal 
technical review.  
The Review Meeting 
 
Regardless of the FTR format that is chosen, every review meeting should abide by the following 
constraints:  
 
• Between three and five people (typically) should be involved in the review;  
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• Advance preparation should occur but should require no more than two hours of work for each 
person; and 

• The duration of the review meeting should be less than two hours. 

 
Given the above constraints, it should be obvious that an FTR focuses on a specific (and small) part of the 
overall software. For example rather than attempting to review an entire design, walkthroughs are 
conducted for each module or small group of modules. With a narrower focus, the FTR has a higher 
likelihood of uncovering errors. 
 
The focus of the FTR is on a work product-a component of the software (e.g., a portion of a requirements 
specification a detailed module design, a source code listing for a module) .  The individual who has 
developed the work product-at the producer –inform the project leader that the work product is complete 
and that a review is required  The project leader contacts  a review leader, who evaluates the work 
product  for readiness. Generates copies, and distributes them to two or three reviewers for advance 
preparation. Each reviewer is expected to spend between one and two hours reviewing the work product, 
making notes and otherwise becoming familiar with the work. Concurrently, the review leader also 
reviews the work product and establishes an end a for the review meeting which is typically scheduled for 
the next day.  
 
The review meeting is attended by the review leader, all reviewers and the producer. One of the reviewers 
takes on the role of the recorder, that is, the individual who records (in writing) all important issues raised 
during the review. The FTR begins with an introduction of the agenda and a brief introduction by the 
producer. The producer then proceeds to “walk through” the  work product, explaining the material, 
while reviewers raise issues based on their advance preparation When valid problems or ;rrors are 
discovered the recorder notes each.   
 
At the end of the review, all attendees of the FTR must decide whether to (1) accept the work  product 
without further modification. (2) reject the work product due to severe errors (once corrected, another 
review must be performed) or (3) accept the work product provisionally (minor errors have been 
encountered and must be corrected, but no additional review will be required).  The decision made, all 
FTR attendees complete a sign-off indicating their participation in the review and their concurrence with 
the review team ‘s  findings.  
 
Review Reporting and Record Keeping 
 
During the FTR  a reviewer (the recorder) actively records all issues that have been raised. These are 
summarized at the end of the review meeting and a review issues list is produced. In addition, a simple 
review summary report is completed. A review summary report answers three questions:  
 
1. What was reviewed? 

2. Who reviewed it?  

3. What were the findings and conclusions? 

 
The review summary report is typically a single page form (with possible attachments) . It becomes part of 
the project historical record and may be distributed to the project leader and other interested parties. 
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The review issues list serves two purposes: (1) to identify problem areas within the product and (2)  to 
serve as an action item checklist that guides the producer as corrections are made. An issues list is 
normally attached to the summary report.  
 
It is important to establish a follow-up procedure to ensure that  items on the issues list have been 
properly corrected. Unless this is done, it is possible that issues raised can “fall between the cracks .” One 
approach is to assign the responsibility for follow-up to the review leader . A more formal approach as 
signs responsibility to an independent SQA group. 
 
Review Guidelines 
 
Guidelines for the conduct of formal technical reviews must be established in advance, distributed to all 
reviewers, agreed upon and them followed.  A review that is uncontrolled can often be worse than no 
review at all.     
 
The following represents a minimum set of guidelines for formal technical reviews:  
 
1. Review the product, not the producer. An FTR involves people and egos.  Conducted properly, the 

FTR  should leave all participants with a warm feeling of accomplishment. Conducted improperly, 
the FTR can take on the aura of an inquisition. Errors should be pointed out gently; the tone of the 
meeting should be loose and constructive; and the intent should  not be to embarrass or belittle. The 
review leader should conduct the review meeting to ensure that the proper tone and attitude are 
maintained and should immediately halt a review that has gotten out of control. 

 
2. Set an agenda and maintain it. One of the key maladies of meetings of all types is drift. An FTR must 

be kept on track and on schedule. The review leader is chartered with the responsibility for 
maintaining the meeting schedule and should not be afraid to nudge people when drift sets in. 

 
3. Limit debate and rebuttal. When an issue is raised by a reviewer, there may not be universal 

agreement on its impact.  Rather than spending time debating the question, the issue should be 
recorded for further discussion off-line. 

 
4. Enunciate problem areas, but don’t attempt to solve every problem noted. A review is not a problem 

solving session.  The solution of a problem can often be accomplished by the producer alone or with 
the help of only one other individual.  Problem solving  should be postponed until after the review 
meeting. 

 
5. Take written notes. It is sometimes a good idea for the recorder to make notes on as wall board, so 

that wording and prioritization can be assessed by other reviewers as information is recorded. 
 
6. Limit the number of participants and insist upon advance preparation . Two heads are better than 

one, but 14 are not necessarily better than 4.  Keep the number of people involved to the necessary 
minimum. However, all review team members must prepare in advance. Written comments should 
be solicited by the review leader (providing an indication ;that the reviewer has reviewed the 
material). 

 
7. Develop a checklist  for each work product that is likely to be reviewed . A checklist helps the review 

leader to structure the FTR meeting and helps each reviewer to focus on important issues. Checklists 
should be developed for analysis, design, coding, and even test documents.  
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8. Allocate resources and time schedule for FTRs.  For reviews to be effective, they should be scheduled 

as a task during the software engineering process. In addition time should be scheduled for the 
inevitable modification that will occur as the result of an FTR. 

 
9. Conduct meaningful training for all reviewers. To be effective all review participants should receive 

some formal training. The training should stress both process related issues and the human 
psychological side of reviews. Freedman and Weinberg [FRE90] estimate a one month learning curve 
for every 20 people who are to participate effectively in reviews.  

 
10. Review your early reviews. Debriefing can be beneficial in uncovering problems with the review 

process itself. The very first work product to be reviewed might be the review guidelines themselves.     
 
Because there are many variables ( e.g., number of participants, type of work products, timing and length, 
specific review approach)  that have an impact on a successful review a software organization should 
experiment to determine what approach works best in a local context. Porter [POR95] and his colleagues 
provide excellent guidance for this type of experimentation  
 

10.3 Formal Approaches To SQA 
 
In preceding sections, we have argued that software quality is everyone’s job and that it can be achieved 
through competent analysis,  design, coding, and testing as well as through the application of formal 
technical reviews, a multi tiered testing strategy, better control   of software documentation and the 
changes made to it and the application of accepted software development standards. In addition, quality 
can be defined in terms of a broad array of quality factors and  measured (indirectly) using a variety of 
indices and metrics. 
 
Over the past two decades, a small, but vocal, segment of the software engineering community has argued 
that a more formal approach to software quality assurance is required . It can be argued that a computer 
program is a mathematical object. A rigorous syntax and semantics can be defined  for every 
programming language and a similarly rigorous approach to the specification of software requirements is 
also available. Once the requirements model (specification) has been represented in a rigorous manner, 
mathematic profs of correctness can be applied to demonstrate that a program conforms exactly to it 
specification.     
 
Extensive information on review checklists can be found at the FTR Archive on the wall wide web. See 
“Further Readings and Other Information Sources” for additional information.  
 
Attempts to prove programs correct are not new. Dijkstra  [DIJ76] and Linger et al. [LIN79],  among 
others, advocated proofs of program correctness and tied these to the use of structured programming 
concepts. Today , a number of different approaches to formal proof of correctness have been proposed.  

 
10.4 Statistical Quality Assurance  

 
Statistical quality assurance reflects a growing trend throughout industry to become more quantitative 
about quality. For software, statistical quality assurance implies the following steps: 
 
1. Information about software defects is collected and categorized. 
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2. An attempt is made to trace each defect to its underlying cause (e.g., nonconformance to specification, 
design error, violation of standards, poor communication with customer) 

3 Using the pareto principle (80 percent of the defects can be traced to 20 percent of all possible causes), 
isolate the 20 percent (the “vital few”). 

4 Once the vital few causes have been identified, move to correct the problems that have caused the 
defects. 

 
This relatively simple concept represents an important step toward the creation of an adaptive software 
engineering process in which changes are made to improve those elements of the process that introduce 
error. 
 
To illustrate the process, assume that a software development organization collects information on defects 
for a period of one year. Some errors are uncovered as software is being developed. Other defects are 
encountered after the software has been released to its end user,  Although hundreds of different errors 
are uncovered, all can be tracked to one (or more) of the following causes:  
 
• Incomplete or erroneous specification (IES)  

• Misinterpretation of customer communication (MCC) 

• Intentional deviation from specification (IDS) 

• Violation of programming standards (VPS) 

• Error in data representation (EDR) 

• Inconsistent module interface (IMI) 

• Error in design logic (EDL) 

• Incomplete or erroneous testing (IET) 

• Inaccurate or incomplete documentation (IID) 

• Error in programming language translation of design (PLT)  

• Ambiguous or inconsistent ;human-computer interface (HCI)  

• Miscellaneous (MIS). 

 
To apply statistical SQA, Table 10.2 is built The table indicates that IES, MCC, and EDR are the vital few 
cause that account for 53 percent of all errors.  It should be noted however that IES, EDR PLT, and EDL 
would be selected as the vital few causes if only serious  errors are considered. Once the vital few case are 
determined, the software development organization can begin corrective action. For example to correct 
MCC the software developer might implement facilitated application specification techniques to improve 
the quality of customer communication and specification. To improve EDR the developer might acquire 
CASE tools for data modeling and perform more stringent data design reviews . As the vital few causes 
are corrected, new candidates pop to the top of the stack.    
In conjunction with the collection of defect information software developers can calculate an error index 
(EI) for each major step in the software engineering process [IEE94]. After analysis, design, coding testing, 
and release, the following data are gathered: 
 
Ei = the total number of errors uncovered during the ith step in the software            Engineering process 
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Si     =the number of serious errors 
 
Mi   =the number of moderate errors  
 
Ti    =the number of minor errors 
 
PS   =size of the product (LOC design statements pages of documentation) at the ith step 
               
Data Collection Statistical SQA 
 

  Total  Serious  Moderate  Minor 
Error     No     %    No    % No     %    N0      %  
  IES    205   22%    34   27%    68   18%   103    24% 
  MCC     156   17%    12     9%    68   18%     76   17% 
  IDS      48     5%      1     1%    24     6%     23     5% 
  VPS      25     3%      0     0%    15     4%     10     2% 
  EDR    130     14%    26   20%    68    18%     36     8% 
  IMI      58     6%      9     7%    18      5%     31     7% 
  EDL      45     5%    14    11%    12      3%      19     4% 
  IET      95   10%    12      9%    35      9%     48    11% 
  IID      36      4%      2      2%    20      5%     14      3% 
  PLT      60     6%    15     12%    19      5%     26      6% 
  HCI      28     3%      3       2%    17      4%       8      2% 
  MIS      56     6%      0       0%    15      4%     41      9% 
Totals    942  100%   128   100%  379    100%   435    100% 

 
Table 10.2 Data Collection for statistical SQA 
 
Ws Wm, Wt =weighting factors for serious moderate and trivial errors where recommended values are 
Ws = 10, Wm =3, Wt  =  1.   The weighting factors for each phase should become larger as development 
progresses.  This rewards an organization that finds errors early. 
 
At each step in the software engineering process, a phase  index PI, is ∑computed.: 
 

PIi  = Ws (S/Ei)  + Wt (T/Ei) 
The error index (EI) is computed by calculating the cumulative effect or earn Pii  weighting errors 
encountered later in the software engineering process more heavily than those encountered earlier. 
 

EI =    ∑ (I∗PI)/PS 
=(PI1+2PI2 +3PIS3 +iPIi)PS 

 
The error index can be used in conjunction with information collected in Table 10.2 to develop an overall 
indication of improvement in software quality. 
 
The application of statistical SQA and the pareto principle can be summarized in a single sentence.  Spend 
your time focusing on things that, really matter but first be sure that you understand what really matters ! 
Experienced industry practitioners agree that most really difficult defects can be traced to a relatively 
limited number of root causes. In fact, most practitioners have an intuitive feeling for the “real” causes of 
software defects , but few have spent, time collecting data to support their feelings. By performing the 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 116 

basic steps of statistical SQA the vital few causes for defects can be isolated and appropriate corrections 
can be made.  
 
A comprehensive discussion of statistical SQA is beyond the scope of this book. Interested readers should 
see [SCH87], [KAP95], or [KAN95]. 
 

10.5 Software Reliability 
 
There is no doubt that the reliability of a computer program is an important element of its overall quality . 
If a program repeatedly and frequently fails to perform, its matters little whether other software quality 
factors are acceptable.  
 
Software reliability, unlike many other quality factors, can be measured, directed, and estimated using 
historical and developmental data. Software reliability is defined in statistical terms as “the probability of 
failure free operation of a computer program in a specified environment for a specified time” [MUS87].  
To illustrate, program X is estimated to have a reliability of 0.96 over eight elapsed processing hours. In 
other words, if program X  were to be executed 100 times and require eight hours of elapsed processing 
time (execution time) , it is likely to operate correctly (without failure) 96 times out of 100. 
 
Whenever software reliability is discussed, a pivotal question arises: What is meant by the term “failure”?  
In the context of any discussion of software quality and reliability, l failure is nonconformance to software 
requirements. Yet, even within this definition there are gradations. Failures can be only annoying  or 
catastrophic. One failure can be corrected within seconds ;while another requires weeks or even months to 
correct. Complicating the issue even further, the correction of one failure may in fact result in the 
introduction of other errors that ultimately result in other failures. 
Measures of Reliability and Availability 
 
Early work in software reliability attempted to extrapolate the mathematics of hardware reliability theory 
(e.g., [ALV64] to the prediction of software reliability). Most hardware related reliability models are 
predicated on failure due to wear rather than failure due to design defects. In hardware, failures due to 
physical wear (e.g., the effects of temperature corrosion, shock) are more likely than a design related 
failure.  Unfortunately, the opposite is true for software.  In fact, all software failures can be traced to 
design or implementation problems; wear does not enter into the picture.  
 
7There is still debate over the relationship between key concepts in hardware reliability and their 
applicability to software (e.g., [LIT89], [ROO901),  although an irrefutable link has yet to be established, it 
is worthwhile to consider a few simple concepts that apply to both system elements.  
 
If we consider a computer-based system, a simple measure of reliability is mean time between failure 
(MTBF), where 
 
MTBF = MTTF + MTTR 
 
(The acronyms MTTE and MTTR are mean time to failure and mean time to repair, respectively) 
 
Many researchers argue that MTBF is a far more useful measure them defects/KLOC . Stated simply an 
end user is concerned with failures, not with the total defect count. Because each defect contained within a 
program does not have the same failure rate, the total defect count provides little indication of the 
reliability of a system. For example, consider a program that has been in operation for 14 months. Many 
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defects in this program may remain undetected for decades before they are discovered. The MTBF of such 
obscure defect might be 50 or even 100 years . Other defects in as yet undiscovered, might have a failure 
rate if 18 or 24 months . Even if every one of the first category of defects (those with long MTBF) is 
removed, the impact on software reliability is negligible. 
 
In addition to a reliability measure, we must develop a measure of availability.  Software availability is the 
probability that a program is operating according to requirements at a given point in time and is defined 
as: 
 

Availability = MTTE/ (MTTE + MTTR) ∗ 100% 
 
The MTBF reliability measure is equally sensitive to MTTF and  MTTR  The availability measure is 
somewhat more sensitive to MTTR  an  indirect measure of the maintainability of software.  
 
Software  Safety and Hazard Analysis 
 
Leveson  [LEV86] discusses the impact of software in  safety critical system when  she writes: 
 
Before software was used in safety critical systems, they were often controlled by conventional 
(nonprogrammable) mechanical and electronic devices. System safety Techniques are designed to cope 
with Random failure in these [nonprogrammable] systems.   Human design errors are not considered 
since it is assumed that all faults caused by human errors can be avoided completely or removed prior to 
delivery and operation. 
 
When software is used as part of the control system, complexity can increase by an order of magnitude or 
more. Subtle design faults induced by human error something that can be uncovered and eliminated in 
hardware-based conventional control- become much more difficult to uncover when software is used . 
 
Software safety and hazard analysis are software quality assurance activities that focus on the 
identification and assessment of potential hazards that may impact software negatively and cause an 
entire system to fail. If hazards can be identified early in the software engineering process, software design 
features can be specified that will either eliminate or control potential hazards.  
 
A modeling and analysis process is conducted as part of software safety. Initially, hazards are identified 
and categorized by criticality and risk. For example, some of the hazards associated with a computer-
based cruise control for an automobile might be:     
   
• Cause uncontrolled acceleration that cannot be stopped  

• Does not disengage when the brake pedal is depressed  

• Does not engage when switch is activated 

• Slowly loses or gains speed 

 
Once these system-level hazards are identified analysis techniques are used to assign severity and 
probability of occurrencfe.  To be effective, software must be analyzed in the context of the entire system. 
For example, a subtle user input error (people are system components) may be magnified by a software 
fault to produce control data that improperly positions a mechanical device. If a set of external 
environmental conditions are met (and only of they are met), the improper position of the mechanical 
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device will cause a disastrous failure.  Analysis techniques such as fault tree analysis [VES81] can be used 
to predict the chain of events that can cause hazards and the probability that each of the events will occur 
to create the chain. 
 
Fault tree analysis builds a graphical model of the sequential and concurrent combinations of events that 
can lead to a hazardous event or system state.  Using a well-developed fault tree, it is possible to observe 
the consequences of a sequence of interrelated failures that occur in different system components. Real-
time logic (RTL) builds a system model by specifying events and corresponding actions .  The event-action 
model can be analyzed using logic operations to test safety assertions about system components and their 
timing . Petrinet models can be used to determine the faults that are most hazardous. 
 
This approach is analogous to the risk analysis approach described for software project management.  The 
primary difference is the emphasis on technology issues as opposed to project related topics. 
 
Once hazards are identified and analyzed, safety  related requirements can be specified for the software. 
That is the specification can contain a list of undesirable events and the desired system responses to these 
events.  The role of software in managing undesirable events is then indicated.  
 
Although software reliability and software safety are closely related to one another, it is important to 
understand the subtle difference between them Software reliability uses statistical analysis to determine 
the likelihood that a software failure will occur. However the occurrence of a failure does not necessarily 
result in a hazard or mishap. Software safety examines the ways in which failures result in conditions that 
can lead to a mishap. That is failures are not considered in a vacuum but are evaluated in the context of an 
entire computer-based  system. 
 
A comprehensive discussion of software safety and hazard analysis is beyond the scope of this book. 
Those readers with further interest should refer to Leveson’s  [LEV95] book on the subject.  
 

10.6 The SQA Plan 
 
The SQA plan provides a road map for instituting software quality assurance. Developed by the SQA 
group and the project team, the plan serves as a template for SQA activities that are instituted for each 
software project. 
 
Figure 10.3 presents an outline for SQA  plans recommended by the IEEE [IEEE94] Initial sections describe 
the purpose and scope of the document and indicate those software process activities that are covered by 
quality assurance. All documents noted in the SQA plan are listed and all applicable standards are noted.  
The Management section of the plan describes SQA’s  place in the organizational structure; SQA tasks and 
activities and their placement throughout the software process; and the organizational roles and 
responsibilities relative to product quality.  
The Documentation section describes(by reference) each of the work products produced as part of the 
software process. These include:  
 
• Project documents (e.g., project plan) 
• Models (e.g., ERDs, class hierarchies)  
• Technical documents (e.g., specifications, test plains)  
• User documents (e.g., help files) 
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In addition this section defines the minimum set of work products that are acceptable to achieve high 
quality.  
 
Standards, Practices, and Conventions lists all applicable standards/practices that are applied during the 
software process (e.g., document standards, coding standards, and review guidelines.  In addition all 
project, process, and (in some instances) product metrics that are to be collected as part of software 
engineering work are listed.  
 
The Reviews and Audits section of the plan identifies the reviews and audits to be conducted by the 
software engineering team, the SQA group and the customer.  It provides an overview of the approach for 
each review and audit. 
 
I. Purpose of plan 
II. References 
III. Management 

1. Organization 
2. Tasks 
3. Responsibilities 

IV. Documentation 
1. Purpose 
2. Required software engineering documents 
3. Other documents 

V. Standards, Practices, and Conventions 
1. Purpose 
2. Conventions 

 VI.   Reviews and Audits  
1. Purpose 
2. Review Requirements 

a. software requirements review 
b. design reviews 
c. software verification and validation reviews 
d. functional audit 
e. physical audit 
f. in-process audits 
g. management reviews 

VII. Test  
VIII. Problem Reporting and Corrective Action 
IX. Tools, Techniques, and Methodologies 
X. Code Control  
XI. Media Control  
XII. Supplier Control  
XIII. Records Collection, Maintenance, and Retention 
XIV. Training  
XV. Risk Management 
 
Fig   10.3. ANSI/IEEE Std 730 1984 and 983-1986 Software quality  Assurance plans. 
 
The Test section references the software test plan and procedure. It also defines test record-keeping 
requirements, Problem Reporting and Corrective Action defines procedures for reporting, tracking, and 
resolving errors and defects, and identifies the organizational responsibilities for these activities.  
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The remainder of the SQA plan identifies the tools and methods that support SQA activities and tasks; 
references software configuration management procedures for controlling change; defines a contract 
management approach; establishes methods for assembling, safeguarding, and maintaining all records; 
identifies training required to meet the needs of the plan, and defines methods for identifying, assessing, 
monitoring, and controlling risks. 
 

10.7 The ISO 9000 Quality Standards6 
 
A Quality assurance system may  be defined as the organizational structure, responsibilities, procedures, 
processes, and resources for implementing quality management [ANS87] ISO 9000 describes quality 
assurance elements in generic terms that can be applied to any business regardless of the products or 
services offered.  
 
To become registered to one of the quality assurance system models contained in ISO 9000 a company’s 
quality system and operations are scrutinized by third party auditors for compliance to the standard and 
for effective operation. Upon successful registration, a company is issued a certificate from a registration 
body represented by the  auditors. Semiannual surveillance audits ensure continued compliance to the 
standard. 
 
The ISO Approach to Quality Assurance Systems 
 
The ISO 9000 quality assurance models treat an enterprise as a network of interconnected processes. For a 
quality system to be ISO-compliant, these processes must address the areas identified in the standard and 
must be documented and practiced as described. Documenting a process helps an organization 
understand, control, and improve it, It is the opportunity to understand control and improve the process 
network that offers, perhaps, the greatest benefit to organizations that design and implement ISO-
compliant quality systems. 
ISO 9000 describes the elements of a quality assurance system in general terms. These elements include the 
organizational structure, procedures, processes, and resources needed to implement quality planning 
quality control, quality assurance, and quality improvement. However, ISO 9000 does not describe how an 
organization should implement these quality system elements, Consequently, the challenge lies in 
designing and implementing a quality assurance system that meets the standard and fits the company’s 
products, services, and culture.   
 
The ISO 9001 Standard 
 
ISO 9001 is the quality assurance standard that applies to software engineering. The standard contains 20 
requirements that must be present for an effective quality assurance system. Because the ISO  9001 
standard is applicable to all engineering disciplines, a special set of ISO guidelines (ISO 9000-3) have been 
developed to help  interest the standard for use in the software process 
 
This section written by Michael Stovsky  has been adapted from “Fundamentals of ISO 9000 and “IS0 9001 
Standard,” workbooks developed for Essential Software Engineering, a video curriculum developed by 
R.S. Pressman & Associates, Inc Reprinted with permission. 
 
The 20 requirements delineated by ISO  9001 address the following topics:  
 
1. Management responsibility  

2. Quality system 
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3. Contract review 

4. Design control 

5. Document and data control 

6. Purchasing 

7. Control of customer supplied product  

8. Product identification and tractability 

9. Process control 

10. Inspection and testing  

11. Control of inspection, measuring, and test equipment  

12. Inspection and test status 

13. Control of  nonconforming product 

14. Corrective and preventive action 

15. Handling, storage, packaging, preservation, and delivery 

16. Control of quality records 

17. Internal quality audits  

18. Training  

19. Servicing  

20. Statistical techniques 

 
In order for a software organization to become registered to ISO 9001 it, must establish policies and 
procedures to address each of the requirements noted above and then be able to demonstrate that these 
policies and procedures are being followed. For further information on ISO 9001 the interested reader 
should see [SCH94] and [ESE95].    

 
10.8 Short  Summary 

 
 Software reviews are one of the most important SQA activities. Reviews serve as a filter for the 

software process, removing errors while they are relatively inexpensive to find and correct.  The 
formal technical review or walk through is a stylized review meeting that has been  shown to be 
extremely effective in uncovering errors.  

 
 To properly conduct software quality assurance data about the software engineering process should 

be collected, evaluated, and disseminated.  
 

 Statistical SQA helps to improve the quality of the product and the software process itself.  
 

 Software reliability models extend measurements, enabling collected defect data to be extrapolated 
into projected failure rates and reliability predictions.  

 
 In summary, we recall the words of Dunn and Ullman  [DUN82] “Software quality assurance is the 

mapping of the managerial precepts and design disciplines of quality assurance onto the applicable 
managerial and technological space of software engineering” The ability to ensure quality is the 
measure of a mature engineering discipline. When the mapping alluded to above is successfully 
accomplished, mature software engineering is the result. 
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10.9 Brain Storm 

 
1. Discuss about Formal Technical Reviews ? 

2. What is Statistical Quality Assurane ? 

3. Explain briefly about the SQA plan ? 

4. Discuss about ISO 9000 standards ? 
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11.1 Snap Shot  
 
Software configuration management is an umbrella activity that is applied throughout the software 
process. Because change can occur at any time, SCM activities are developed to (1) identify change (2) 
control change, (3) ensure that change is being properly implemented and (4) report change to others who 
may have an interest. 
 
It is important to make a clear distinction between software maintenance and software configuration 
management. Maintenance is a set of software engineering activities that occur after software has been 
delivered to the customer and put into operation. Software configuration management is a set of tracking 
and control activities that begin when a software project begins and terminate only when the software is 
taken out of operation 
 
A primary goal of software engineering is to improve the ease with which changes can be accommodated 
and reduce the amount of effort expended when changes must be made. In this chapter we discuss the 
specific activates that enable us to manage change. 
 

11.2 Software Configuration Management. 
 
The output of the software process is information that may be divided into three broad categories: (1) 
computer programs (both source-level and executable forms) (2) documents that describe the computer 
programs (targeted at both technical practitioners and users), and (3) data (contained within the program 
or external to it) The items that comprise all information produced as part of the software process are 
collectively called a software configuration. 
 
As the software process progresses, the number of software configuration items (SCIs) grows rapidly. A 
system specification spawns a software project plan and software requirements specification (as well as 
hardware related documents). These in turn spawn other documents to create a hierarchy of information. 
If each SCI simply spawned other SCIs little confusion while result. Unfortunately, another variable enters 
the process—change. Change may occur at any time for any reason. In fact the First Law of System 
Engineering [BER80] states: No matter where you are in the system life cycle the system will change and 
the desire to change it will persist throughout the life cycle. 
 
What is the origin of these changes? The answer to this question is as varied as the changes themselves. 
However there are four fundamental sources of changes: 
 

 New business or market conditions that dictate changes in product requirements or business rules. 

 New customer needs that demand modification of data produced by information systems, 
functionality delivered by products or services delivered by a computer-based system. 

 Reorganization and /or business downsizing that causes changes in project priorities of software 
engineering team structure. 

 Budgetary or scheduling constraints management is a set of activities that have been developed to 
managed change throughout the life cycle of computer software. SCM can be viewed as a software 
quality assurance activity that is applied throughout the software process. In the sections that follow, 
we examine major SCM tasks and important concepts that help us to manage change. 

 
Software configuration management is a set of activities that have been developed to manage  change 
throughout the life cycle of computer software. SCM can be viewed as a software quality assurance 
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activity that is applied throughout the software process. In the sections that follow , we examine major 
SCM tasks and important concepts that help us to manage change. 
 
Baselines 
 
Change is a fact of life in software development. Customers want to modify requirements. Developers 
want to ,modify technical approach. Managers want to modify project approach. Why all this 
modification? The answer is really quite simple. As time passes all constituencies know more (about what 
they need, which approach would be best and how to get it done and still make money). This additional 
knowledge is the driving force behind most changes and leads to a statement of fact that is difficult for 
many software engineering practitioners to accept: Most changes are justified! 
 
A baseline is a software configuration management concept that helps us to control change without 
seriously impeding justifiable change. The IEEE defines a baseline as: 
 
A specification or product that has been formally reviewed and agreed upon that thereafter serves as the 
basis for further development and that can be changed only through formal change control procedures. 
 
One way to describe a baseline is through analogy: Consider the doors to the kitchen of a large 
restaurant. To eliminate collisions one door is marked OUT and the other is marked IN. The doors have 
stops that allow them to be opened only in the appropriate direction. 
 
If a waiter picks up an order in the kitchen, places it on a tray and then realizes he has selected the wrong 
dish, he may change to the correct dish quickly and informally before he leaves the kitchen. 
 
If, however he leaves the kitchen gives the customer the dish and then is informed of his error he must 
follow a set procedure: (1) look at the check to determine if an error has occurred; (2) apologize profusely; 
(3) return to the kitchen through the IN door. (4) explain the problem and so forth. 
A baseline is analogous to a dish as it passes through the kitchen door in the restaurant. Before a software 
configuration item becomes a baseline, change may be made quickly and informally. However once a 
baseline change may be made quickly and informally. However once a baseline is established we 
figuratively pass through a swinging one-way door. Changes can be made but a specific formal procedure 
must be applied to evaluate and verity each change. 
 
In the context of software engineering a baseline is a milestone in the development of software of software 
that is marked by the delivery of one or more software configuration items and the approval of these SCIs 
that is obtained through a formal technical review . For example the elements of a  design specification 
have been documented and reviewed. Errors are found and corrected. Once all parts of the specification 
have been reviewed corrected and then approved the design specification becomes a baseline. Further 
changes to the after each has been evaluated and approved. Although baselines can be defined at any level 
of detail, the most common software baselines are shown in Figure11.1. 
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      System Specification      
       Software Requirement Specification 
 
                          Data Specification 
 
                     Source Code 
 
                              Test Plans/Procedures/Data 
 
                                                             Operational System 
 
Figure 11.1 Baselines 
 
The progressing of events that lead to a baseline is illustrated in Figure11.2. Software engineering tasks 
produce one or more SCIs. After SCIs are reviewed and approved, they are placed in a project database 
(also called a project library or software repository). When a member of a software engineering team 
wants to make a  modification to a baselined SCI it is copied from the project database into the engineer’s 
private work space. However, this extracted SCI can be modified only if SCM controls (discussed later in 
this chapter) are followed. The dashed arrows noted in Figure11.2  illustrate the modification path for a 
baselined SCI. 
 
Software Configuration Items 
 
We have already defined a software configuration item as information that is created as part of the 
software engineering process. In the extreme an SCI could be considered to be a single section of a large 
specification or one test case in a large suite of tests. More realistically an SCI is a document an entire suite 
of test cases or a named program component (e.g., a C++ function or an Ada95 package). 
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The following SCIs become the target for configuration management techniques and form a set of 
baselines: 
 
1. System Specification 
2. Software Project Plan 
3. Software Requirements Specification 

a. Graphical analysis models 
b. Process specifications 
c. Prototype 
d. Mathematical specification 

4. Preliminary User Manual 
5. Design Specification 

a. Data design description 
b. Architectural design description 
c. Module design descriptions 
d. Interface design descriptions 
e. Object descriptions(if object-oriented techniques are used) 

 
6. Source Code Listing 
7. Test Specification 

a. Test plan and procedure 
b. Test cases and recorded results 

8. Operation and Installation Manuals 
9. Executable Program 

a. Module executable code 
b. Linked modules 

10. Database Description 
a. Schema and file structure 
b. Initial Content 

11. As-built User Manual  
12. Maintenance Documents 

a. Software problem reports 
b. Maintenance requests 
c. Engineering change orders 

13. Standards and Procedures for Software Engineering 
 
In addition to the SCIs noted above , many software engineering organizations also place software tools 
under configuration control. That is Specific versions of editors, compilers and other CASE tools are 
“frozen” as part of the software configuration. Because these tools were used to produce documentation, 
source code, and data, they must be available when changes to the software configuration are to be made. 
Although problems are rare it is possible that a new version of a tool(e.g., a compiler) might produce 
different results than the original version. For this reason, tools, like the software that they help to 
produce, can be baselined as part of a comprehensive configuration management process. 
 
In reality, SCIs are organized to form configuration objects that may be catalogued in the project database 
with a single name. A configuration object has a name, attributes and is “connected” to other objects by 
relationships. In Figure 11.3 the configuration objects design specification, data model, module N, source 
code, and test specification  are each defined separately. However each of the objects is related to the 
others as shown by the arrows. A curved arrow indicates a compositional relation. That is data model and 
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module N are part of the object design specification. A double headed straight arrow indicates an 
interrelationship. If a change were made to the source code object interrelationships enable a software 
engineer to determine what other objects (and SCIs ) might be affected. 
 

 

11.3 The SCM Process 
 
Software configuration management is an important element of software quality  assurance. Its primary 
responsibility is the control of change. However, SCM is also responsible for the identification of 
individual SCIs and various versions of the software the auditing of the software configuration to ensure 
that it has been properly developed, and the reporting of all changes applied to the configuration. 
 
Any discussion of SCM introduces a set of complex questions: 
 

 How does an organization identify and manage the many existing versions of a program (and its 
documentation) in a manner that will enable change to be accommodated efficiently?. 

 How does an organization control changes before and after software is released to a customer? 

 Who has responsibility for approving and prioritizing changes? 

 How can we assure that changes have been made properly? 

 What mechanism is used to apprise others of changes that are made? 

 
These questions lead us to the definition of five SCM tasks: identification, version control, change control, 
configuration auditing and reporting. 
 

11.4 Identification of Objects in the Software Configuration 
 
To control and manage software configuration items each must be separately named and then organized 
using an object-oriented approach. Two types of objects can be identified [CHO89]: basic objects and 
aggregate objects.  A basic objects air a “unit of text” that has been created by a software engineer during 
analysis, design, coding of testing. For example, a basic object might be a section of a requirements 
specification, a source listing for a module or a suite of test cases that are used to exercise the code. An 
aggregate object is a collection of basic objects and other aggregate objects. In Figure 11.3 design 
specification is an aggregate object. Conceptually it can be viewed as a named list of pointers that specify 
basic objects such as data model and module N. 
 
Each object has a set of distinct features that identify it uniquely: a name. A description, a list of resources 
and a “realization”; the object name is a character string that identifies the object unambiguously. The 
object description is a list of data items that identify: 
 

 The SCI type (e.g., document, program, data) that is represented by the object; 

 A project identifier; and change and /or version information. 

Resources are”entities that are provided, processed , referenced or otherwise required by the object” 
[CHO 89]. For example data types, specific functions or even variable names may be considered to be 
object and null for an aggregate object. 
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Configuration object identification must also consider the relationships that exist between named objects. 
An object can be identified as  <part-of> defines a hierarchy of objects. For example using the simple 
notation. 
 
E-R diagram 1-4 <part-of> data model; 
Data model <part-of> Design Specification; 
We create a hierarchy of SCIs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
  
 
 
 
 
 
Figure 11.3 Configuration objects 
 
 
 
 
It is unrealistic to assume that the only relationship among objects in an object hierarchy are aling direct 
paths of the hierarchical tree. In many cases, objects are interrelated across branches of the objects 
hierarchy. For example, data model  is interrelated to data flow diagrams (assuming the use of structured 
analysis) and also interrelated to a set of test cases for a specific equivalence class. These cross-structural 
relationships can be represented in the following manner: 
 
Data model <interrelated> data flow model; 
Data model <interrelated> test case class m; 
 
In the first case, the interrelationship is between a composite object while the second relationship is 
between an aggregate object (data model), and a basic object(test case class m). 
 
The interrelationship between configuration objects can be represented with a module interconnection 
language (MIL) [NAR87].  A MIL description interdependencies among configuration objects and enables 
any version system to be constructed automatically. 
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The identification scheme for software objects must recognize that objects evolve throughout the software 
process. Before an object is baselined, it is change many times and even after a baseline has been 
established, change may be quite frequent. It is possible to create an evolution graph [GUS89] any object. 
The evolution graph describes the change history of the objects and comes object 1.1. Minor corrections 
and changes result in versions1.1.1 and 1.1.2 which is followed by a major update that is object1.2. The 
evolution or object1.0 continues through 1.3 and 1.4 but at the same time a major modification to the object 
results in a new evolutionary path version 2.0 Both versions are currently supported. 
 
It is possible that changes may be made to any version , but not necessarily ot all versions. How does the 
developer reference all modules, documents and test cases for version1.4? How does the marketing 
department know what customers currently have version 2.1? How can we be sure that changes to 
version2.1 source code are properly reflected in corresponding design documentation? A key element in 
the answer to all of the above questions is identification. 
 
A variety of automated SCM tools( e.g., CCC, RCS, SCCS, Aide-de-Camp) have been developed to aid in 
identification (and other SCM) tasks. In some cases a tool is designed to maintain full copies of only the 
most recent version. To achieve earlier versions (of documents of programs) changes (catalogued by the 
tool ) are “subtracted” from the most recent version[TIC82]. This scheme makes the current configuration 
immediately available and other versions easily available. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 11.4 Evolution Graph 
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Figure 11.5 Versions and Variants 
 

 
 
11.5 Version Control 

 
Version control combines procedures and tools to manage different versions of configuration objects that 
are created during the software engineering process Clemm [CLE89] describes version control in the 
context of SCM: 
 
Configuration management’s allows a user o specify alternative configuration of the software system 
through the selection of appropriate versions. This is supported by associating attributes with each 
software version , and then allowing a configuration to be specified [and constructed ] by describing the 
set of desired attributes. 
 
The “attributes” mentioned above can be as simple as a specific  version number that is attached to each 
object or as complex as a string of Boolean variables (switches ) that indicate specific types of functional 
changes that have been applied to the system. [LIE89]. 
 
One representation of the different versions of a system is the evolution graph presented in Figure 11.4  
Each node on the graph is an aggregate object that is a complete version of the software. Each versions of 
the software is a collection of SCIs (source code, documents, data) and each version may be composed of 
different variants. To illustrate this concept consider a versions f a simple program that is composed of 
components 1,2,3,4 and 5 (Figure 11.5) Component 4 is used only when the software is implemented using 
color displays. Component 5 is implemented when monochrome displays are available. Therefore two 
variants of the version can be defined : (1) Components 1,2,3,4; and (2) Components1,2,3 and 5. 
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To construct the appropriate variant of a given version of a program , each component can be assigned an 
“attribute–tuple “ a list of features that will define whether the component should be used when a 
particular variant of a software version is to be constructed. One or more attributes is assigned of each 
variant . For example a color displays are to be supported. 
 
Another way to conceptualize the relationship between components , variants and version is to represent 
them as an object pool [REI 89]. As Figure 11.6 shows the relationship between configuration objects and 
components, variants and versions can be represented as a three-dimensional space. A component is 
composed of a collection of objects at the soame revision level. A variant is a different collection of objects 
at the same revision level and therefore coexists in parallel with other variants. A new version is defined 
when major changes are made to one or more objects.  
 
A number of different automated approaches to version control have been proposed over the past decade. 
The primary difference in approcaches is the sophistication of the attributes that are used to construct 
specific versions and variants of a system and the mechanics of the process of construction. In early 
systems such as SCCS [ROC75], attributes took on numeric values.  In later systems such as RCS [TIC82] , 
symbolic revision keys were used, Modern systems such as NSE or DSEE [ ADA89] create version 
specifications that can be used to construct variants or new versions. These systems also support the 
baselining concept, thereby precluding uncontrolled modification (or deletion) of a particular version. 
 

11.6 Change Control  
 
For a large software development project, uncontrolled change rapidly leads to chaos. Change Control 
combines human procedures and automated tools to provide a mechanism for the control of change. The 
change control process is illustrated schematically in figure 11.7 A change request is submitted and 
evaluated to assess technical merit potential side effects, overall impact on other configuration objects and 
system functions and the projected cost of the change. The results of the evaluation are presented as a 

Variants 

components

Object 
Versions 

Figure 11.6 Object pool representation of  components, variants, and versions 
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change report that is used by a change control authority (CCA) a person or group who makes a final 
decision on the status and priority of the change. An engineering change order (ECO) is generated for 
each approved change. The ECO describes the change to be made; the constraints that must be respected, 
and the criteria for review and audit , The object to be changed is “ checked out” of the project database 
the change is made and appropriate SQA activities are applied. The object is then “checked in” to the 
database and appropriate version control mechanism are used to create the next version of the software. 
 
The “Check in” and ”Check out” processed implement two important elements of change control access 
control and synchronization  control. Access control governs which software engineers have the authority 
to access and modify a particular configuration object. Synchronization control helps to ensure that 
parallel changes performed by two different people don’t overwrite one another[HAR89]. 

 
Need for change is recognized 

 
Change request from user 

 
Developer evaluates 

 
Change report is generated 

 
Change control authority decides 

 
 
Request is queued for action, ECO generated  Change request is denied 
 
Assign individuals to configuration objects  User is informed 
 
“Check out” configuration objects (items) 
 
Make the change 
 
Review (audit) the change 
 
“Check in” the configuration items that have been changed 
 
Establish a baseline for testing 
 
Perform quality assurance and testing activities 
 
“Promote” changes for inclusion in next release (revision) 
 
Rebuild appropriate version of software 
 
Review (audit ) the change to all configuration items 
 
Include changes in new version 
 
Distribute the new version 
 



Software Configuration Management 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 135 

 
Figure 11.7 The change control process 
 
Access and synchronization control flow is illustrated schematically in Figure 11.8 based on approved 
change request and ECO, a software engineer checks out a  configuration object. An access control 
function ensures that the software engineer has authority to check out the object, and synchronization 
control locks the object in the project database so that no updates can be made to it until the version 
currently checked out has been replaced. Note that other copies can be checked out, but other updates 
cannot be made. A copy of the baselined object called the “extracted version” is modified by the software 
engineer. After appropriate SQA and testing the modified version of the object is checked in and the new 
baseline object is unlocked. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.8 Access and synchronization control 
 
Some readers may begin to feel uncomfortable with the level of bureaucracy implied by the change control 
process description. This feeling is not uncommon. Without proper safeguards changed control can retard 
progress and create unnecessary red tape. Most software developers who have change control 
mechanisms have created a number of layers of control to help avoid the problem alluded to above. 
 
Prior to an SCI becoming a baseline , only informal change control need be applied.  The developer of the 
configuration object (SCI) in question may make whatever changes are justified by project and technical 
requirements (as long as changes do not impact broader system requirements that lie outside the 
developer’s cope of work). Once the object has undergone formal technical review and had been 
approved, a baseline is created. Once an SCI becomes a baseline project level change control is 
implemented . Now , to make a change the developer must gain approval form the project manager (if the 
change is “local”) or form the  CCA if the change impacts other SCIs . In some cases normal generation of 
change requests change reports, and ECOs is dispensed with. However, assessment of each change is 
conducted and all changes are tracked and reviewed. 
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When the software product is release to customers formal change control is instituted. The formal change 
control procedure has been outlined in figure 11.7. 
 
The change control authority (CCA) plays an active role in the second and third layer of control. 
Depending on the size and character of a software project, the CCA may be comprised of one person – the 
project manager – or a number of people (e.g., representatives from software, hardware, database 
engineering, support, marketing, etc.). The role of the CCA is to take a global view, that is, to assess the 
impact of change beyond the SCI in question. How will the change impact hardware? How will the 
change impact performance? How will the change  modify the customer’s perception of the product? How 
will the change affect product quality and reliability? These and many other questions are addressed by 
the CCA. 
 

11.7 Configuration Audit 
 
Identification, version control, and change control help the software developer to maintain order in what 
would otherwise be a chaotic and fluid situation. However, even the most successful control mechanisms 
track a change only until an ECO is generated. How can we ensure that the change has been properly 
implemented? The answer is twofold: (1) formal technical reviews and (2) the software configuration 
audit. 
 
The formal technical review focuses on the technical correctness of the configuration object that has been 
modified. The reviewers assess the SCI to determine consistency with other SCIs, omissions, and potential 
side effects. A formal technical review should be conducted for all but the most trivial changes. 
 
A software configuration audit complements the formal technical review by assessing a configuration 
object for characteristics that are generally not considered during review. The audit asks and answers the 
following questions: 
 

1. Has the change specified in the ECO been made? Have any additional modifications been 
incorporated? 

2. Has a formal technical review been conducted to assess  technical correctness? 

3. Have software engineering standards been properly followed? 

4. Has the change been “highlighted” in the SCI? Have the change date and change author been 
specified? Do the attributes of the configuration Object reflect the change? 

5. Have SCM procedures for noting the change, recording it, and Reporting it been followed? 

6. Have all related SCIs been properly updated? 

 
In some cases, the audit questions are asked as part of a formal technical review. However, when SCM is a 
formal activity, the SCM audit is conducted separately by the quality assurance group. 
 

11.8 Status Reporting 
 
Configuration status reporting (sometimes called status accounting) is an SCM task that answers the 
following questions; (1) What happened? (2) Who did it?(3) When did it happened ? (4) What else will be 
affected?. 
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The flow of information of configuration status reporting is illustrated in Figure 11.7  Each time is SCI is 
assigned new of updated identification a CSR entry is made. Each time a change is approved by the CCA 
(i.e., an ECO is issued) a CSR entry is made. Each time a change is made. Each time a configuration audit 
is conducted the results are reported as part of the CSR task. Output from CSR may be placed in an on-line 
database [TAY85] so that software developers or maintainers can access change information by keyword 
category. In addition a SCR report is generated on a regular basis and is intended to keep management 
and practitioners appraised of important changes. 
 
Configuration status reporting plays a vital role in the success of a large software development project. 
When many  people dare involved it is likely that “the left hand not knowing what the right hand is 
doing” syndrome will occur. Two developers may attempt to modify the same SCI with different and 
conflicting intent. A software engineering team may spend months of effort building software to a  
obsolete for a proposed change is not aware that the change is being made. CSR helps to eliminate these 
problems by improving communication among all people involved. 

 
11.9 SCM Standards 

 
Over the past two decades a number of software configuration management standards have been 
proposed . Many early SCM standards such as MIL-STD-483, DOD-STD-480A and MIL-STD-1512A, 
focused on software developed for military applications. However more recent ANSI/IEEE standards 
such as ANSI/IEEE Std. No. 828-1983, Std, No. 1042-1987 and Std, No.1028-1988 [IEEE94] are applicable 
for commercial software and are recommended for both large and small software engineering 
organizations. 

11.10 Short Summary 
 

 Software configuration management is an umbrella activity that is applied throughout the software 
process. SCM identifies, controls , audits and reports modifications that invariably occur while 
software is being developed and after it has been released to a customer. All information produced as 
part of the software process becomes part of a software configuration. The configuration is organized 
in manner that enables orderly control of change. 

 
 The software configuration is composed of a set interrelated objects also called software configuration 

items that are produced as a result of some software engineering activity. In addition to documents 
programs and data the development environment that is used to create software can also be placed 
under configuration control. 

 
 Once a configuration object has been developed and reviewed, it becomes a baseline. Changes to a 

baselined object result in the creation of a new version of that object. The evolution of a program can 
be tracked by examining the revision history of all configuration objects. Basic and aggregate objects 
forms object pool from which variants and versions are created. Versions control is set of procedures 
and tools for managing the use of these objects. 

 
 Change control is a procedural activity that ensures quality and consistency as changes are made to a 

configuration object. The change control process begins with a  change request, leads to a decision to 
make or reject the request for change and culminates with a controlled update of the SCI that is to be 
changed. 
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 The configuration audit is an SQA activity that help to ensure that quality is maintained as changes 
are made. Status reporting provides information about each change to those with a need to know. 

 
11.11 Brain storm 

 
1. Explain about Software Configuration Management ? 

2. Give a Short Note on SCM Process ? 

3. Explain briefly version and change control ? 

4. What is Status Reporting ? 

5. Describe about SCM standards in a brief manner ? 
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12.1 Snap Shot  
 
The word “system” is possibly the most overused and abused term in the technical lexicon. We speak of 

political systems and educational systems of avionics systems and manufacturing systems of banking 

systems and subway systems. The word tells us little. We use the adjective describing “system“ to 

understand the context in which the word is used. Webster’s Dictionary defines “system” as “ a set or 

arrangement of things so related as to form a unity or organic whole… a set of facts, principles ,rules etc ., 

classified and arranged in an orderly form so as to show a logical plan linking the various parts … a 

method or plan of classification or arrangement …an established way of doing something ;method; 

procedure…” Five additional definitions are provided in the dictionary yet no precise synonym is 

suggested “system “ is a special word. 

 
Borrowing from Webster’s definition we define a computer-based system as: 
  
A set of arrangement of elements that are organized to accomplish some predefined goal by processing 
information. 
 
The goal may be to support some business function or to develop a product that can be sold to generate 
business revenue. To accomplish the goal a computer based system makes use of a variety of system 
elements: 
 
Software:  Computer programs, data structures and related documentation that serve to effect the logical 
method, procedure or control that is required. 
 
Hardware: Electronic devices that provide computing capability and electromcehanical devices (e.g., 
sensors, motors, pumps) that provide external world function. 
 
People: Users and operators of hardware and software 
 
Database: A large, organized collection of information that is accessed via software. 
 
Documentation: Manuals, forms and other descriptive information that portrays the use and /or 
operation of the system. 
 
Procedures : The steps that define the specific use of each system element or the procedural context in 
which the system resides. 
 
 
The elements combine in a variety of ways to transform information. For example, a marketing 
department transforms raw sales data into a profile of the typical purchaser of a product and a robot 
transforms a command file containing specific instruction into a set of control signals that cause some 
specific physical action. Creating an information system to assist the marketing department and control 
software to support the robot both require system engineering 
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One complication characteristic of computer-based systems is that the elements comprising one system 
may also represent one macro element of a still larger system. The macro element is a computer-based 
system that is one part of a larger computer-based system. As an example we consider a “factor 
automation system “ that is essentially a hierarchy of systems shown in the figure 12.11. At the lowest 
level of the hierarchy we have a numerical control machine robots and data entry devices. Each is a 
computer-based system in its own right. The elements of the numerical control machine include electronic 
and electromechanical hardware (e.g., Processor and memory motors, sensors); software (for 
communications, machine control, and interpolation); people (the machine operator); a database (the 
stored NC program); and documentation and procedures. A similar decomposition could be applied to 
the robot and data entry device. Each is a computer-based system. 
 
At the next level in the hierarchy a manufacturing cell is defined. The manufacturing cell is a computer-
based system that may have element of its won (e.g., computers, mechanical fixtures) and also integrates 
the macro elements that we have called numerical control machine, robot, and data entry device. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12.1  A  System of  Systems 

 
 
 
To summarize, the manufacturing cell and its macro elements each are comprised of system elements with 
the generic labels software, hardware, people, database, procedures, and documentation. In some cases, 
macro elements may share a generic element. For example, the robot and the NC machine might both be 
managed by a single operator (the people element). In other cases, generic elements are exclusive to one 
system. 
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The role of the system engineer is to define the elements for a specific computer-based system in the 
context of the overall hierarchy of systems (macro elements). In the sections that follow, we examine the 
tasks that constitute computer system engineering. 

 
12.2 The System Engineering Hierarchy 

 
Regardless of its domain of focus, system engineering encompasses a collection of top-down and bottom-
up methods to navigate the hierarchy illustrated in Figure 12.2. The system engineering process usually 
begins with a “world view” That is the entire business of product domain is examined to ensure that the 
proper business or technology context established. The world view is refined to focus more fully on 
specific domain of interest. Within a specific domain, the need for targeted system elements (e.g., data, 
software, hardware, people)is analyzed. Finally the analysis design and construction of a targeted system 
element is initiated. At the top of the hierarchy a very broad context is established and at the bottom, 
detailed technical activities performed by the relevant engineering discipline (e.g., hardware or software 
engineering) are conducted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.2 The system engineering hierarchy  
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Stated in a slightly more formal manner the world view (WV) is composed of a set of systems in its own 
right. 

WV={D1,D2,D3….Dn} 
 
Each domain is composed of specific elements (Ej) each of which serves some role in accomplishing the 
objectives and goals of the domain: 

Di={E1,E2,E3….Em} 
 
Finally, each element is implemented by specifying the technical components(Ck) that achieve the 
necessary function for an element. 

Ej={C1,C2,C3….Ck} 
In the software context, a component could be a computer program a reusable program component, a 
module, an class or object or even a programming language statement. 
 
It is important to note that the system engineer narrows the focus of work as he or she moves downward 
in the hierarchy described above. However the world view portrays a clear definition of overall 
functionality that will enable the engineer to understand the domain and ultimately the system or product 
in the proper context. 
 

12.3 System Modeling 
 
System engineering is a modeling process. Whether the focus is on the world view or the detailed view the 
engineer creates models that [MOT92]: 
 

 Define the processes that serve the needs of the view under consideration  

 Represent the behavior of the processes and the assumptions on which the behavior is based 

 Explicitly define both exogenous and endogenous input to the model 

 Represent all linkages (including output) that will enable the engineer to better understand the view. 

To construct a system model, the engineer should consider a number or restraining factors: 
 
1. Assumption that reduce the number of possible permutations and variations thus enabling a model to 

reflect the problem in a reasonable manner. As an example consider a three-dimensional rendering 
product used by the entertainment industry to create realistic animation. One domain of the product 
enables the representation of 3D human forms. Input to this domain encompasses the ability ot input 
movement from a live human ”actor” from video or by the creation of graphical models. The system 
engineering makes certain assumptions about the range of allowable human movement so that the 
range of inputs and processing can be limited. 

 
2. Simplifications that enable the model to be created in timely manner. To illustrate, consider an office 

products  company that sells and services a broad range of copiers fax machines and related 
equipment. The system engineer  is modeling the needs of the service organization and is working to 
understand the flow of information that spawns a service order. Although a service order can be 
derived from many origin, the engineer categorizes only two source: internal demand or external 
request. This enables a simplified partitioning of input that is required to generate the work order. 

 
3. Limitation that help to bound the system. For example an aircraft avionics system is being modeled 

for a next generation aircraft. Since the aircraft will be a two-engine design, all monitoring domains 
for propulsion will be modeled to accommodate a maximum of two engines and associated 
redundant systems. 
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4. Constraints that will guide the manner in which the model is created and the approach taken when 
the model is implemented. For example, the technology infrastructure for the three-dimensional 
rendering system described above is a single Power PC-based processor. The computational 
complexity of problems must be constrained to fit within the processing bounds imposed by the 
processor. 

 
5. Preferences that indicate the preferred architecture for all data, functions, and technology. The 

preferred solution sometimes comes into conflict with other restraining factors. Yet, customer 
satisfaction is often predicated on the degree to which the preferred approach is realized. 

 
The resultant system model may call for a completed automated solution, a semi-automated solution or a 
manual approach. In fact it is often possible to characterize models of each type that serve as alternative 
solutions to the problem at hand. In essence the system engineer simply modifies the relative influence of 
different system elements to derive models of each type. 
 

12.4 Information Engineering : An Overview 
 
The goal of information engineering (IE) is to define architecture that will enable a business to use 
information effectively. In addition information engineering works to create an overall plan for 
implementing those architecture {SPE93}. Three different architecture must be analyzed and designed 
within the context of business objectives and goals: 
 
• Data architecture 

• Application architecture 

• Technology infrastructure 

 
The data architecture provides a framework for the information needs of a business or business function. 
The individual building blocks of the architecture are the data objects that are used by the business. The 
data objects flow between business functions are organized within a database and are transformed to 
provide information that serves the needs of the business. 
 
The application architecture encompasses those elements of a system that transform objects within the 
data architecture for some business purpose. In the context of this book, we normally consider the 
application architecture to be the system of programs that performs this transformation. However in a 
broader context, the application architecture might incorporate the role of people and business procedures 
that have not been automated. 
 
The technology infrastructure provides the foundation for the data and application architectures. The 
infrastructure encompasses the hardware and software that are used to support application and data. The 
includes computers and computer networks, telecommunication  links, storage technologies and the 
architecture that has been designed to implement these technologies. 
 
The model the system architectures described earlier a hierarchy of information engineering activities is 
defined. As shown in the figure 12.3 the world view is achieved through information strategy planning 
(ISP) ISP views the entire business as an entity and isolates the domains of the business that are important 
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to the overall enterprise. ISP defines the data objects that are visible at the enterprise level, their 
relationships and how they flow between the business domains. 
 
The domain view is addressed with an IE activity called business area analysis (BAA). Hares [HAR93] 
describes BAA in the following manner: 
 
BAA is concerned with identifying in detail data and function requirements of selected business area 
identified during ISP and ascertaining their interactions. It is only concerned with specifying what is 
required in a business area. 
 
As the information engineer begins BAA the focus narrows to a specific business domain. BAA views the 
business area as an entity and isolates the business functions and procedures that enable the business area 
to meet its objectives and goals. BAA like ISP defines data objects their relationship and how data flow. 
But at this level these characteristic are all bounded by the business area being analyzed. The outcome of 
NAA is to isolate areas of opportunity in which information systems may support the business area. 
 

 
Fig 12.3 The Information Engineering Hierarchy 
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Once an information system has been isolated for further development, IE makes a transition into 
software engineering. By invoking a business system design step the basic requirements of a specific 
information system are modeled and these requirements are translated into data architecture, applications 
architecture and technology infrastructure. 
 
The final IE step—construction and integration (C&I) focuses on implementation detail. The architecture 
and infrastructure are implemented by constructing an appropriate database and internal data structures 
by building application using program components and by selecting appropriate elements of a technology 
infrastructure to support the design created during BSD. Each of these system components must then be 
integrated to form a complete information system into the business area context, performing all user 
training and logistics support to achieve a smooth transition. 

 
12.5 Product Engineering : An Overview 

 
The goal of product engineering is to translate the customer’s desire for a set of defined capabilities into a 
working product. To achieve this goal, product engineering-like information engineering – must derive 
architecture and infrastructure. The architecture encompasses four distinct system components: software, 
hardware, data (and databases) and people. A support infrastructure  is established and includes the 
technology required to tie the components together and the information( e.g, documents, CD_ROM, 
video) that is used to support the components. 
 
As shown in figure 12.4, the world view is achieved through system analysis. The overall requirements of 
the product are elicited from the customer. These requirements encompass information and control needs, 
product function and behavior, overall product performance, design, and interfacing constraints and other 
special needs. Once these requirements are known, the job of system analysis is to allocate function and 
behaviour to each of the four components noted above. 
 
Once allocation  has occurred, component engineering commences. Component engineering is actually a 
set of concurrent activities that address each of the system components separately; software engineering, 
hardware engineering, human engineering and database engineering. Each of these engineering 
disciplines takes a domain-specific view, but it is important to note that the engineering disciplines must 
establish and maintain active communication with one another. Part of the role of system analysis is to 
establish the interfacing mechanisms that will enable this to happen. 
 
The element view for product engineering is the engineering discipline itself applied to the allocated 
component. For software engineering, this means analysis and design modeling activities and 
construction and integration activities that encompass code generation, testing and support steps. 
Analysis modeling allocates requirements into representations of data, function and behavior. Design 
maps the analysis model into data, architectural, interface and procedural designs for the software. 
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Fig 12.4 The Product Engineering Hierarchy 
 
 

12.6 Information Engineering 
 
When business automation was first introduced in the early 1960s, companies looked for areas of 
opportunity and simply automated business functions that  were previously performed in a manual 
fashion. As time passed, individual computer programs were combined to encompass business 
applications. The applications were grouped into major information systems that served  specific business 
areas. Although this approach was workable, it resulted in problems. Systems were difficult to ‘connect’ to 
one another; redundant data was every where; the impact of changes to applications that served one area 
of the business was difficult to project and even more difficult to implement; and old programs outlived 
their usefulness, but lack of resources caused them to be used long past their prime. 
 
In their book on ’reengineering the corporation’, Hammer and Champy state: Information technology 
plays a crucial role in business reengineering, but one that is easily miscast. Modern, state-of-the-art 
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information technology is part of any reengineering effort, an essential enabler permits companies to 
reengineer business process. But to paraphrase what is often said about money and governments, merely 
throwing computers at an existing business problem does not cause it to be reengineered. 
 
The global objective of information engineering is to apply ”information technology “ in a way that best 
serves the overall needs of the business. To accomplish this, IE must begin by analyzing business 
objectives and goals, understanding the many business areas that must define the information needs of 
each business area and the business as a whole. Only after this is done does IE make a transition into the 
more technical domain of software engineering – the process where information systems, applications and 
programs are analyzed, designed and built. 
 

12.7 Short Summary 
 

 A high technology system encompasses a number of components:  software, hardware, people, 
database, documentation, and procedures.  System engineering helps to translate a customer’s needs 
into a model of a system that makes use of one or more of these components. 

 
 System engineering begins by taking a  “world view”.  A business domain or product is analyzed to 

establish all basic requirements focus is then narrowed to a  “domain view”, where each of the system 
elements is analyzed individually.  

 
 Each element is allocated  to one or more engineering components which are then addressed by the 

relevant engineering discipline. 
 

12.8 Brain Storm  
 
1. Explain System Engineering Hierarchy briefly ? 

2. Give a short note on System Modeling ? 

3. Discuss about Information Engineering ? 

4. Give an overview of Product Engineering ? 
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13.1 Snap Shot 
 
In this lecture we focus on the Information Strategy Planning, Enterprise Modeling, Business – level Data 
Modeling, Business Area Analysis and Process Modeling. 

 
13.2 Information Strategy Planning 

 
The first information engineering steps is information  strategy planning (ISP). The overall objectives of 
ISP are (1) to define strategic business objectives and goals, (2) to isolate the critical success factors that 
will  enable the business to achieve these goals and objectives, (3) to analyze the impact of technology and 
automation on the goals and objectives and (4) to analyze existing information to determine its role in 
achieving goals and objectives. ISP also creates a business-level data model that defines key data objects 
and their relationship to one another and to  various business areas. 
 
The terms ‘objectives’ and ‘goals’ take on a specific meaning in ISP. An objective is a general statement of 
direction. For example, a business objective for a maker of cellular telephone might be to reduce the 
manufactured cost of the product. Goals define a quantitative course of action. To achieve the objective 
noted above, the manufacture might state the following goals: 
 
• Decrease reject rate by 20 percent within 9 months 

• Gain 10 percent price concessions from suppliers 

• Reengineer keypads to reduce assembly cost by 30 percent 

• Automate manual assembly of components 

• Implement a real-time production control system 

 
Objectives tend to be strategic. Goals are tactical 
 
Critical success factors can be tied to an objective or to individual goals. A CSF must be present if the 
objective or goal is to be achieved. Therefore management planning must accommodate it. For example, 
CSFs for the manufacturing objective  noted above might be: 
 
• Total quanlity management strategy for the manufacturing organization 

• Worker training and motivation 

• Higher-reliability machines 

• Higher-quality parts 

• A ‘sales plan’ to convince suppliers to reduce prices 

• Availability of engineering staff 

 
Technology impact analysis examines objectives and goals and provides an indication of those 
technologies that will have a direct or indirect impact on achieving them successfully. The information 
engineer addresses the following questions: How critical is the technology to the achievement of a 
business objective? Is the technology available today? How will the technology change the way  business 
is conducted? What are the direct and indirect costs? How should the business adapt or extend objectives 
and goals to accommodate the technology? 
 
Because every business area makes some use of information technologies, ISP must also identify what 
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currently exists and how it is currently used to achieve objectives and goals. Business process 
reengineering is an activity that examines existing systems with the intent of reengineering them to better 
meet business needs. 
 

13.3 Enterprise Modeling 
 
Enterprise modeling creates a three-dimensional view of a business. The first dimension addresses the 
organizational structure and the functions that are performed within the business area defined by the 
organizational structure. The second dimension decomposes business function to isolate the processes that 
make function happen. Finally, the third dimension relates objectives, goals and CSFs to the organization 
and its functions. In addition, enterprise modeling creates a business-levels data model that defines data 
objects and their relationships to other elements of the enterprise model. 
 
The business organization is defined in a  classical business unit hierarchy. Each box in the org chart 
represents a business area of the company. Like all hierarchies, it is generally possible to refine the boxes 
within the org chart until small working groups or even individuals are noted. However, for ISP purpose, 
business areas are all that is required. 
 
Business functions are identified and the processes that are required to implement the  business functions 
are defined. Each of the business functions is then related to the business area that has responsibility for it. 
In general  a business function is some ongoing activity that must be accomplished to support the overall 
business. It can usually be described as a noun phrase. A business process is a transform that accepts 
specific inputs and produces specific outputs. It can generally be described as a verb phrases. 
 
Business Function 
 
ο Product development and engineering 

ο Marketing 

ο Demographic research 

ο Market analysis 

ο Forecasting 

ο Product specification 

ο Product engineering 

ο Technology research 

ο New product development 

ο System analysis 

ο Component engineering 

ο Hardware engineering 

ο Software engineering 

ο Human engineering 

ο Product V & V 

ο Quality assurance 
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Figure 13.1  Deriving an organizational chart and coupling business areas to function. 
 
To illustrate how a business function is refined into a set of supporting processes, consider the market 
analysis function shown figure 13.1. A process refinement follows: 
Market analysis: 
 
• Collect data on all sales inquiries 
• Collect data on all sales 
• Analyze data on inquiries and sales 
• Develop buyer profile 
• Compare profile to demographic research 
• Study industry buying trends 
• Establish focus groups to determine best sales message 
• Design rough sales materials 
• Test sales materials and refine 
• Finalize sales approach 
 
Each of the bulleted process steps could be further refined to provide a detailed road map for 
accomplishing the business function. During ISP, the information engineer does not become concerned 
with areas of automation opportunity. The intent is simply to  understand and model the business. 
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13.4 Business-Level Data Modeling 
 
Business-level data modeling  is a an enterprise modeling activity that focuses on the data objects(also 
called entities)   that are required to achieve the business functions. At the business level, typical data 
objects include producers and consumers of information (e.g., a customer), things (e.g., a report), 
occurrences of events (e.g.,a sales conference), organization units (e.g., sales and marketing), places (e.g., 
manufacturing cell), or information structures (e.g., an employee file). A data object contains a set of 
attributes that define some aspect, quality, characteristic or descriptor of the data that is being described. 
 
For example during enterprise modeling an information engineer might define the data object customer. 
To more fully describe customer, the following attributes  are defined: 
 
Object : Customer 
Attributes: 
 
 Name 
 Company name 
 Job classification and purchase authority 
 Business address and contact information 
 Product interest(s) 
 Past purchase(s) 
 Date of last contact 
 Status of contact 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13.2 Depicting relation ship among business level data  objects. 
 
Once a set of data  objects is defined, their relationships are identified. A relationship indicates how 
objects are connected to one another. As an example, consider the objects  customer, product A and 
salesperson. An information engineer creates a diagram (figure 13.2) to depict these relationships. 
Referring to the figure relationships imply a connection between data objects. In general, relationships can 
be read in either direction; hence a customer purchase products A and product A is purchased by a 
customer. In reality additional information is provided as part of the data model. 
 
The culmination of the ISP activity is the creation of a series of cross-reference matrices that establish the 
overall relationships between the organization (and its business areas), business objectives and goals, 
business functions, and data objects. Examples of such matrices are shown in figure 13.3 
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13.5 Business Area Analysis 
 
In his book on information engineering , Martin describes business area analysis in the following manner: 
 
Business areas analysis(BAA) establishes a detailed framework for building an information-based 
enterprise. It takes one business area at a time and analyzes it in detail. It uses diagrams and matrices to 
model and record the data and activities in the enterprise and to give a clear understanding of the 
elaborate and subtle ways in which the information aspects of the enterprise interrelate. 
 
During BAA, our focus shifts from the world view to the domain view. To model ‘ the elaborate and 
subtle ways in which the information aspects of the enterprise interrelate’ the information engineer must 
depict how data objects (described during ISP and  refined during BAA) are used and transformed within 
each business area and how the business functions and processes within each business area transform   
these data objects. In essence, both exogenous and endogenous data are analyzed and modeled for each 
business area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13.3 Typical cross-reference matrics used during ISP 
 
To accomplish this work, BAA makes use a number of different models; 

• Data models (now refined to the business area level) 
• Process flow models 
• Process decomposition diagrams 
• A variety of cross-reference matrices 
 
The data objects defined during ISP are refined for use within each business area. For example the data 
object customer described in the preceding section is used by the sales department. After evaluation of the 
needs of the sales department ( an analysis of the sales domain), the original definition of customer is 
further refined to meet the needs of sales: 
 
Object :Customer 
Attributes: 
 Name 
 Company name  Object Company 
 Job classification and purchase authority 
 Business address and contact information 
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 Product interest(s) 
 Past purchase(s) 
 Date of last contact – record of contacts 
 Status of contact – status of last contact 

 next contact date 
 recommended nature of  contact 

The attribute company name has been modified to point to another object called Company. This object 
contains not only the company name but additional information about the size of the company, its 
purchasing requirements, the name of other contacts and so on. This information will be useful in the sales 
domain. Other attributes have been  modified and added as noted above. 
 

13.6  Process Modeling 
 
The work performed within a business area encompasses a set of business functions that are further 
refined into business processes. To illustrate consider a simplified version of the sales function discussed 
in section 13.4.  The processes that occur to accomplish sales are: 
 
Sales Function 
 
• Establish customer contact 

• Provide product literature and related information 

• Address questions and concerns 

• Provide evaluation product 

• Accept sales order 

• Check availability of configuration ordered  

• Prepare delivery order  

• Confirm configuration, pricing , ship data with customer 

• Transmit delivery order to fulfillment department 

• Follow up with customer. 

 
A process flow diagram (Figure 13.4) can be developed for this sequence of processing. It should be noted 
that each business function relevant to the business area can be refined in a similar manner. 
 

13.7 Information Flow Modeling 
 
The process flow model is integrated with the data model to provide an indication of how information 
flows through a business area. Input and output data objects are shown for each process, providing an 
indication of how the process transforms information to accomplish a business function. 
 
Once a complete set of process flow models has been created the information engineer(along with others) 
examines how the existing process can be reengineered (e,g., [HAM93],[JAY94]) and where existing 
information systems or applications might be modified or replaced by more efficient information 
technologies. The revised process model is used as a basis for the specification of new or revised software 
to support the business function. 
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The domain view established during BAA serves as the basis for business system design and construction 
and integration –IE seeps that are actually part of the software engineering process. The steps will be 
considered in later chapters. 
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13.8  Short  Summary 
 

 Information engineering is a system  engineering approach that is used to define architectures that 
enable a business to use information effectively.   

 
 The intent of information engineering is to derive comprehensive data architectures, an application 

architecture, and a technology infrastructure that will meet the needs of the business strategy and the 
objectives and goals of each business area.   

 
 Information engineering encompasses information strategy planning business area analysis and 

application specific analysis that is actually part of software engineering. 
 

13.9 Brain Sorm 
 
1. Discuss about Information Strategy Planning ? 

2. Explain briefly about Enterprise Modeling ? 

3. Give a Short note on Business Area Analysis ? 

4. Discuss abot process Modelilng ? 
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 14.1 Snap Shot  
Software Engineering occurs as a consequence of a process called system engineering. Instead of 
concentrating solely on software, system engineering.  Instead of concentrating solely on software, system 
engineering focuses on a variety of elements, analyzing and designing and organizing those element into a 
system that can be a product, a service or a technology for the transformation of information or control. 

 
14.2 Product Engineering 

 
Product engineering (also called system engineering) is a problem solving activity. Desired product data, 
function, and behavior are uncovered analyzed and allocated to individual engineering components. The 
system engineer begins with customer-defined objectives and goals for the product and proceeds to model 
these requirement in a manner that allocates them to as set of engineering components— software, 
hardware, data and people. The components are tied together with a support infrastructure the 
technology required to integrate the components and the information that is used to support the 
components. 
 
The genesis of most new products and systems begins with a rather nebulous concept of desired function. 
Therefore the system engineer mist bound the product requirements by identifying the scope of function 
and performance desired. For example, it is not enough to say that the control software for the robot in a 
manufacturing automation system will ”respond  rapidly if a parts tray is empty.“ The system engineer 
mist defines (1) what indicates an empty tray to the robot, (2) the precise time bounds within which 
software response is expected and (3) what form the response mistake. That is the system engineer mist 
describes the events that drive the behavior of the robot the nature of the behavior and the quantitative 
bounds placed on the behavior.  
 
Once function, performance, constraints and interfaces are bounded the system engineer moves onto a 
task that is called allocation. During allocation function is assigned to one or more engineering 
components. Often alternative allocations are proposed and evaluated. To illustrate the process of 
allocation we consider a macro element of the factory automation system the conveyor line sorting system 
(CLSS).  The system engineer is presented with the following statement of objectives for CLSS. 
 
CLSS must be developed such that boxes moving along a conveyor line will be identified and sorted into 
one of six bins at the end of the line. The boxes will pass by a sorting station where they will be identified. 
Based on an identification number printed on the side of the box (an equivalent bar code is provided), the 
boxes will be shunted into the appropriate bins. Boxes pass in random order and are evenly spaced. The 
line is moving slowly. 
 
CLSS is depicted schematically before continuing make a list of questions that you would ask if you were 
the system engineer. 
Among the many questions that should be asked and answered are the following: 
 
1.  How many different identification number must be processed and what is their form? 

2. What is the speed of the conveyor line in feet per second and what is the distance between boxes in 
feet? 

3. How far is the sorting station from the bins? 

4. How far apart are the bins? 
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5. What should happen if a box doesn’t have an identification number or an incorrect number is 
present? 

6. What happens when a bin fills to capacity? 

7. Is information about box destination and bin contents to be passed else where in the factory 
automation system? Is real-time data acquisition required? 

8. What error/failure rate is acceptable? 

9. What pieces to the conveyor line system currently exist and are operational? 

10. What schedule and budgetary constraints are imposed? 

 
Note that the above questions focus on function, performance, can information flow and content. The 
system engineer does not ask the customer how the task is to be done; rather the engineer asks what is 
required. 
 
Assuming reasonable answers, the system engineer develops a number of alternative allocations. Note 
that function and performance are assigned to different generic system elements in each allocation. 
 
Allocation 1. A sorting operator is training and place at the sorting station location. He/She reads the box 
and places it into an appropriate bin. 
 
Allocation 1 represents a purely manual (but nevertheless, effective) solutions to the CLSS problem. The 
primary engineering component is people (the sorting operator). The person performs all sorting 
functions. Some documentation (in the form of a table relating identification number to bin location and 
procedural description for operator training) may be required. Therefore this allocation uses only the 
people and documentation elements. 
 
Allocation 2.  A bar code reader and controller are placed at the sorting station. Bar code output is passed 
to a programmable controller that controls a technical shunting mechanism the shunt slides the box to the 
appropriate bin. 
 
For allocation 2, hardware (bar code reader, programmable control, shunt hardware, etc.,) software (for 
the bar code reader and programmable controller) and database (a look-up table that relates box ID with 
bin location) components are used to provide a fully automated solution. It is likely that each of these 
components may have corresponding manuals and other documentation adding another component.  
 
Allocation 3. A bar code reader and controller are placed at the sorting station. Bar code output is passed 
to a robot arm that grasps a box and moves it to the appropriate bin location. 
 
Allocation 3 makes use of one macro element— the robot. Like allocation 2, this allocation uses hardware, 
software, a database and documentation as engineering components. The robot is a macro element of 
CLSS and itself contains a set of engineering components. 
 
By examining the three alternative allocations for CLSS it should be obvious that the same function can be 
allocated to different components. In order to choose the most effective allocation a set of trade-off criteria 
should be applied to each alternative. 
 
The following trade-off criteria govern the selection of a product configuration based on a specific 
allocation of function and performance to generic system elements: 
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Project considerations. Can the configuration be built within pre-established cost and schedule bound? 
What is the risk associated with cost and schedule estimates? 
  
Business considerations.  Does the configuration represent the most profitable solution? Can it be 
marketed successfully? Will ultimate payoff justify development risk? 
 
Technical analysis. Does the technology exist develop all elements of the system? Are function and 
performance assured? Can the configuration be adequately maintained? Do technical resource exist? What 
is the risk associated with the technology? 
 
Manufacturing evaluation. Are manufacturing facilities and equipment available? Is there a shortage of 
necessary component? Can quality assurance be adequately performed? 
 
Human Issues. Are trained personnel available for development and manufacture? Do political problems 
exist? Does the customer understand what the system is to accomplish? 
 
Environmental Interfaces.  Does the proposed configuration properly interface with the system’s external 
environment? Are machine-to-machine and human-to-machine communication handled in an intelligent 
manner? 
 
Legal Considerations. Does this configuration introduce undue liability risk? Can proprietary aspects be 
adequately protected? Is there potential infringement? 
 
We examine some of these issues in more detail late in this lecture. 
It is important to note that the system engineer should also consider off- the shelf solutions to the 
customer’s problem. Does an equivalent system already exist? Can major parts of a solution be purchased 
from a third party? 
 
The application of trade-off criteria results in the selection of a specific system configuration and the 
specification of function and performance allocated to hardware software, people, databases, 
documentation and procedures. Essentially the scope of function and performance is allocated to each 
engineering component of the product. The role of hardware engineering, software engineering, human 
engineering and database engineering is to refine scope and procedure an operational product component 
that can be properly integrated with other components. 
 
System Analysis 
 
System analysis is conducted with the following objectives in mind: (1) identify the customer’s need; (2) 
evaluate the system concept for feasibility; (3) perform economic and technical analysis; (4) allocate 
function to hardware, software, people, database and other system elements; (5) establish cost and 
schedule constraints; and  (6) create a system definition that forms the foundation for all subsequent 
engineering work. Both hardware and software expertise (as well as human and database engineering) are 
required to successfully attain the objectives listed above.   
 
Identification of Need 
 
The first step of the system analysis process involves the identification of need. The analyst (system 
engineer) meets with the customer and the end user (if different from the customer). The customer may be 
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a representative of an outside company, the marketing department of the analyst’s company (when a 
product is being defined), or another technical department  (when an internal system is to be developed). 
Like information engineering the intent is to understand the product’s objective(s) and to define the goals 
required to meet the objective(s). 
 
Once overall goals are identified, the analyst moves on to an evaluation of supplementary information: 
Does the technology exist to build the system? What special development and manufacturing resources 
will be required? What bounds have been placed on costs and schedule? If the new system is actually a 
product to be developed for sale to many customers the following questions are also asked: what is the 
potential market for the product? How does this product compare with competitive products? What 
position does this product take in the overall product line of the company? 
 
Information gathered during the needs identification step is specified in a system concept document. The 
original concept document is sometimes prepared by the customer before meetings with the analyst. 
Invariably customer-analyst communication results in modification to the document. 
 
Feasibility Study 
 
All projects are feasible –- given unlimited resources and infinite time!  Unfortunately, the development of 
a computer-based system or product is more likely plagued by a scarcity of resources and difficult (if not 
downright unrealistic) delivery dates. It is both necessary and prudent to evaluate the feasibility of a 
project at the earliest possible time. Months or years of effort thousand for millions of dollars and untold 
professional embarrassment can be averted if an ill-conceived system is recognized early in the definition 
phase. 
 
Feasibility and risk analysis are related in many ways. If project risk is great the feasibility of producing 
quality software is reduced. During product engineering however, we concentrate our attention on four 
primary areas of interest: 
 
Economic feasibility. An evaluation of development cost weighed against the ultimate income or benefit 
derived from the developed system or product. 
 
Technical Feasibility. A study of function, performance and constraints that may affect the ability to achieve 
an acceptable system. 
 
Legal feasibility. A determination of any infringement violation or liability that could result from 
development of the system. 
 
Alternative An evaluation of alternative approaches to the development of the system or product. 
 
A feasibility study is not warranted for systems in which economic justification is obvious technical risk is 
low, few legal problems are expected and no reasonable alternative exists. However if any of the 
preceding conditions fail a study of that area should be conducted. 
 
Economic justification is generally the “bottom-line” consideration for most systems (notable exceptions 
sometimes include national defense systems, systems mandated by law, and high-technology applications 
such as the space program). Economic justification includes a broad range of concerns that include cost-
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benefits analysis long-term corporate income strategies impact on other profit centers or products cost of 
resources needed for development and potential market growth. 
 
Technical feasibility is frequently the most difficult area to assess at this stage of the product engineering 
process. Because objectives functions and performance are somewhat hazy anything seems possible if the 
“right” assumptions are made. It is essential that the process of analysis and definition be conducted in 
parallel with an assessment of technical feasibility. In this way concrete specification may be judged, as 
they are determined. 
 
The consideration that are normally associated with technical feasibility include: 
  
Development risk. Can the system element be designed so that necessary function and performance are 
achieved within the constraints uncovered during analysis? 
 
Resource availability. Is skilled staff available to develop the system element in question? Are other 
necessary resources (hardware and software) available to build the system? 
 
Technology. Has the relevant technology progressed to a state that will support the system? 
 
Developers of computer-based systems are optimists by nature. However, during an evaluation of 
technical feasibility a cynical if not pessimistic attitude should prevail. Misjudgment at this stage can be 
disastrous. 
 
Legal feasibility encompasses a broad range of concerns that include contracts, liability, infringement and 
myriad other traps frequently unknown to technical staff. A discussion of legal issues and software is 
beyond the scope of this book. The integrated reader should see [SCO89]. 
 
The degree to which alternatives are considered is often limited by cost and time constraints; however a 
legitimate but “ unsponspored” variation should not be buried. 
 
The feasibility study may be documented as a separate report to upper management and included as an 
appendix to the system specification. Although the format of a feasibility study may vary the outline 
provided in Figure 14.1 covers most important topics. 
 
The feasibility study is reviewed first by project management (to assess content reliability) and by upper 
management (to assess project status). The study should result in a “go/no-go” decision. It should be 
noted that other go/no-go decisions will be made during the planning, specification, and development 
steps of both hardware and software engineering. 
 
Economic Analysis 
 
Among the most important information contained in feasibility study is cost-benefit analysis an 
assessment of the economic justification for a computer-based system project. Cost-benefit analysis 
delineates costs for project development and weighs them against tangible. (i.e., measurable directly in 
dollars) and intangible benefits of a system. 
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I.  Introduction 
A. Statement of the problem 
B. Implementation environment 
C. Constraints 

 
II.   Management Summary and Recommendations 

A. Important Findings 
B. Comments 
C. Recommendations 
D. Impact 

 
III.  Alternatives  

A. Alternative system configurations  
B. Criteria used in selecting the final approach 

 
 IV. System Description 

A. Abbreviated statement of scope 
B. Feasibility of allocated elements 

 
V. Cost-Benefit Analysis 

VI. Evaluation of Technical Risk 

VII. Legal Ramifications 

VIII. Other Project Specific Topics. 

 
Figure 14.1 Feasibility Study Outline 
 
Cost-benefit analysis is complicated by criteria that vary with the characteristics of the system to be 
developed, the relative size of the project and the expected return on investment desired as part of a 
company’s strategic plan. In addition many benefits derived from computer-based systems are intangible 
(e.g., better design quality through iterative optimization, increased customer satisfaction through 
programmable control, and better business decisions through reformatted and preanalyzed sales data). 
Direct quantitative comparisons may be difficult to achieve. 
 
As we noted above, analysis of benefits will differ depending on system characteristics. To illustrate, 
consider the benefits for management information systems most data-processing systems are developed 
with ’better information quantity, quality, timeliness or organization’ as a primary objectives. Therefore 
the concentrate on information access and its impact on the user environment. The benefits that might be 
associated with an engineering-scientific analysis program or a computer-based product could differ 
substantially. 
 
Costs associated with the development of a computer-based system the analyst can estimate each cost and 
then use development and ongoing costs to determine a return on investment, a break-even  point and a 
payback period. 
 
The following excerpt (FRI77) may best characterize cost-benefit analysis: 
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Like political rhetoric after the election, the cost-benefit analysis may be forgotten after the project 
implementation begins. However it is extremely important because it has been the vehicle by which 
management approval has been obtained. 
 
Only by sending the time to evaluate feasibility do we reduce the chances for extreme embarrassment (or 
worse) at later stages of a system project. Effort spent on a feasibility analysis that results in cancellation of 
a proposed project is not wasted effort. 
 
Technical Analysis 
 
During technical analysis, the analyst evaluates the technical merits of the system concept, at the same 
time collecting additional information about performance, reliability, maintainability and producibility. In 
some cases, this system analysis step also includes a limited amount of research and design. 
 
Technical analysis begins with an assessment of the technical viability of the proposed system. What 
technologies are required to accomplish system function and performance? What new material, methods, 
algorithms are processes are required and what is their development risk? How will these technology 
issues affect cost? 
 
The tools available for technical analysis are derived from mathematical modeling and optimization 
techniques, probability and statistics queuing theory and control theory – to name a few. It is important to 
note, however that analytical evaluation is not always possible. Modeling (either mathematical or 
physical) is an effective mechanism for technical analysis of computer-based systems. 
 
Blanchard and Fabrycky [BLA81} define a set of criteria for the use of models during technical analysis of 
systems: 
 
1. The model should represent the dynamics of the system configuration being evaluated in a way that 

is simple enough to understand and manipulate and yet close enough to the operating reality to yield 
results. 

 
2. The models should highlight those factors that are most relevant to the problem at hand and suppress 

(with discretion) those that are not as important. 
 

3. The model should be made comprehensive by including all relevant   factors and should be reliable in 
terms of repeatability of results. 

 
4. Model design should be simple enough to allow for timely implementation in problem solving. 

Unless the model can be utilized in a timely and efficient manner by the analyst or the manager, it is 
of little value. If the model is large and highly complex, it may be appropriate to develop a series of 
smaller models in which the output of one can be tied to the input of another. Also it maybe desirable 
to evaluate a specific element of the system independently from other elements. 

 
5. Models design should incorporate provisions for ease of modification and/or expansion to permit the 

evaluation of additional factors as required. Successful model development often includes a series of 
trials before the overall objective is met. Initial attempts may suggest information gaps which are not 
immediately apparent and consequently may suggest beneficial changes. 
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The results obtained from technical analysis form the basis for another ‘go/no-go’ decision on the system. 
If technical risk is severe, if models indicate that desired function or performance cannot be achieved, if 
the pieces just won’t fit together smoothly – it’s back to the drawing board! 
 

14.3 Modeling The System Architecture 
 
Every computer-based system can be modeling as information transforms using an input-processing-
output architecture. Hatley and Pirbhai (HAT87) have extended this view to include two additional 
system features-user interface processing and maintenance and self-test processing. Although these 
additional features are not present for every computer-based system, they are very common, and their 
specification makes any system model more robust. Using a representation of input, processing, output, 
user interface processing, and self-test processing, a system engineer can create a model of system 
components that sets a foundation for later requirements analysis and design steps in each of the 
engineering disciplines. 
 
To develop the system model, an architecture template [HAT87] is used. The system engineer allocates 
system elements to each of five processing regions within the template (1) user interface,(2) input, (3) 
system function and control, (4) output and (5) maintanenacne and self-test. The format of the architecture 
template is shown in fig 14.2.  
 
Like nearly all modeling techniques used in system and software engineering, the architecture template 
enables the analyste to create a hierarchy of detail. An architecture context diagram (ACD) resides at the 
top level of the hierarchy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.2 Architecture Template 
 
The context diagram ‘establishes the information boundary between the system being implemented and 
the environment in which the system is to operate’ [HAT87]. That is the ACD defines all external 
producers of information used by the system, all external consumers of information created by the system 
and all entities that communicate through the interface or perform maintenance and self-test. 
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To illustrate the use of the ACD, consider an extended version of the conveyor line sorting system (CLSS) 
discussed earilier in this. The extended verison makes use of personal computer at the sorting station site. 
The PC executes all CLSS software; inerfaces with the bar code reader to read part number on each box; 
interfaces with the conveyor line monitoring equipment to acquire conveyor line speed; stores all part 
number sorted; interacts with a sorting station operator to produce a variety of reports and diagnostics; 
sends control signals to the shutting hardware to sort the boxes; and communicates with a central factory 
automation mainframe. The ACD for CLSS is shown in figure 14.3. 
 
Each box shown in figure 14.3 represents an external entity- that is a producer or consumer of information 
form the system. For example, the barcode reader produces information that is input to the CLSS system. 
The symbol for the entire system ( or at lower levels, major subsystems) is a rectangle with rounded 
corners. Hence, CLSS is represented in the ACD represent information(data and control) as it moves from 
the external environment into the CLSS system. The external entity bar code reader produces input 
information that is labeled bar code. In essence, the ACD places any system into the context of its external 
environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.3 Architecture context diagramfor CLSS 
 
The system engineer refines the architecture context diagram by considering the shaded  rectangle in 
figure 14.3 in more detail. The major subsystems  that enable the conveyor line sorting system to function 
within the context defined by the ACD are identified. In figure 14.4 the major subsystems are defined  in 
an architecture flow diagram (AFD) that is derived from the ACD. Information  flow across the regions of 
the ACD is used to guide the system engineer in developing the AFD – a more detailed ‘schematic’ for 
CLSS. The architecture flow diagram shows major subsystems and important lines of information (data 
and control) flow. In addition, the architecture template partitions the subsystem procesing into each of 
the five processing regions discussed earlier. At this stage, each of the subsystems can contain one or more 
system elements (e.g., hardware, software, people) as allocated by the system engineer. 
 
The initial architecture flow diagram(AFD) becomes the top node of a hiararchy of AFDs. Each rounded 
rectangle in the original AFD can be expanded into another architecture template dedicated solely to it. 
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This process is illustrated systematically in figure 14.5.  Each of the AFDs for the system can be used as a 
starting point for subsequent engineering steps for the subsytem that has been described. 
 
Subsystems and the information that flows between them can be specified (bounded) for subsequent 
engineering work. A narrative description of each subsystem and  a definition of all data that flow 
between subsystems become important elements of the system specification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.4 Architecture flow diagram for CLSS 
 

14.4 System Modeling and Simulation  
 
Almost three decades ago, R.M. Graham [GRA69] made a distressing comment about the way we built 
computer-based systems: “We build systems like the Wright brothers built airplanes – build the whole 
thing, push it off a cliff, let it crash and start over again”. In fact, for at least one  class of system – the 
reactive system -  we continue to do this  today. 
 
Many computer-based systems interact with the real worked in a reactive fashion. That is real world 
events are monitored by the hardware and software that comprise the computer-based system, and based 
on these events, the system imposes control on the machines, processes and even people who cause the 
event to occur. Real-time and embedded  systems often fall into the reactive systems category. 
 
Unfortunately, the developers of reactive systems sometimes struggle to make them perform properly. 
Until recently, it has been difficult to predict the performance, efficiently and behavior of such systems 
prior to building them. In a very real sense, the construction of many real-time systems was an adventure 
in ‘flying’. Surprise (most of them unpleasant) were not discovered until the system was built and ‘pushed 
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off a cliff’. If the system crashed due to incorrect function, inappropriate behavior, or poor performance, 
we picked up the pieces and started over again. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.5 Building an AFD hierarchy 
 
Many systems in the reactive category control machines and/or processes (e.g., commercial airliners or 
petroleum refineries) that must operate with an extremely high degree of reliability. If the system fails, 
significant economic or human loss could occur. For this reason, the approach described by Graham is 
both painful and dangerous. 
 

14.5 System Specification 
 
The system specification is a document that serves as the foundation for hardware engineering, software 
engineering, data base engineering and human engineering. It describes the function and performance of a 
computer-based system and the constraints that will govern its development. The specification bounds 
each allocated system element. For example, it provides the software engineer with an indication of the 
role of software within the context of the system as a whole and the various subsystems described in the 
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architecture flow diagrams. The system specification also describes the information (data and control) that 
is input to and output from the system. 
 
It should be noted, however that this is but one of many outlines that can be used to define a system 
description document. The actual format and content may be dictated by software or system engineering 
standards or local custom and preferences. 
 

14.6 Short Summary 
 

 Product engineering is a system engineering approach that begins with system analysis.   
 

 The system engineer identifies  the customer’s needs, determines economic and technical feasibility, 
and allocates function and performance to software, hardware, people and databases – the key  
engineering components. 

 
 An architectural model of the system or product is produced and representations of each major 

subsystem can be developed.  Finally the system  engineer can create a reactive system model that can 
be used as the  basis for a simulation of performance and behavior.   

 
 The system engineering task culminates with the creation of a system specification a document that 

forms the foundation for all engineering work that follows. 
 

14.7 Brain Storm 
 

1. Give a brief explaination on system engineering ? 

2. Explain briefly about Modeling the System Architecture ? 

3. What is System Specification ? 

4. Write a Note on System Modeling and Simulation ? 
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15.1 Snap Shot  
 
Like many important contributions to software engineering, structured analysis was not introduced with a 
single landmark paper or book that was a definitive treatment of the subject. Early work in analysis 
modeling was begun in the late 1960s and early 1970s but the first appearance of the structured analysis 
approach was as an adjunct to another important topic-structured design, Research hers needed a 
graphical notation for representing data and the processes that transformed it. These processes would 
ultimately be mapped into design architecture. 
 
The term “structured analysis” originally coined by Douglas Ross, was popularized by DeMarco 
[DEM79]. In his book on the subject, DeMarco introduced and named the key graphical symbols that 
enabled an analyst to create information flow models, suggested heuristics for the use of these symbols 
suggested that a data dictionary and processing narratives could be used as a supplement to the 
information flow models, and presented numerous examples that illustrated the use of this new method. 
In the years that followed, variations of the structured analysis approach were suggested by Page-Jones 
[PAG80] Gane and Sarson [GAN82], and many others. In every instance the method focused on 
information systems applications and did not provide an adequate notation to address the control and 
behavioral aspects of real-time engineering problems. 
 
By the mid-1980 the deficiencies of structured analysis (when attempts were made to apply the method to 
control-oriented application) became painfully apparent. Real-time “extension” was introduced by Ward 
and Mellor [WAR 85] and later by Hatley and Pirbhai [HAT87] these extension resulted in amore robust 
analysis method that could be applied effectively to engineering problems. Attempts to develop one 
consistent notation have been suggested [BRU88] and modernized treatments have been published to 
accommodate the use of CASE tools [YOU89]. 
 

15.2 The Elements of the Analysis Model 
 
The analysis model must achieve three primary objectives: (1) to describe what the customer requires, (2) 
to establish a basis for the creation of a software design and (3) to define a set of requirements that can be 
validated once the software is built. To accomplish the analysis model derived during structured analysis 
takes the form illustrated in figure 15.1. 
 
At the core of the model lies the data dictionary— a repository that contains descriptions of all data objects 
consumed or produced by the software. Three different diagrams surround the core. The entity-
relationship diagram (ERD) depicts relationships between data objects. The ERAD is the notation that is 
used to conduct the data modeling activity. The attributes of each data object noted in the ERD can be 
described using a data object description. 
 
The data flow diagram serves two purposes: (1) to provide an indication of how data are transformed as 
they move through the system and (2) to depict the functions (and sub function) that transform the data 
flow. The DFD provides additional information that is used during the analysis of the information domain 
and serves as a basis for the modeling of function. A description of each function presented in the DFD is 
contained in a process specification (PSPEC). 
 
The state-transition diagram (STD) indicates how the system behaves as a consequence of external events. 
To accomplish this the STD represents the various are made from state to state. The STD serves as the 
basis for behavior (called states) of the system and the manner in which transitions are made from state to 
state. The STD serves as the basis for behavioral modeling. Additional information about control aspects 
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of the software is contained in the control specification 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.1 The structure of the analysis model 
 
The analysis model encompasses each of the diagrams specification, and descriptions and the dictionary 
noted give more detailed discussion of these elements of the analysis model is presented in the sections 
that follow. 
 
 

15.3 Data Modeling  
 
Data modeling answers of specific questions that are relevant to any data processing application. What are 
the primary data objects to be processed by the system? What is the composition of each data object and 
what attributes describe the object? Where do the objects currently reside? What are the relationships 
between each object and other objects? What is the relationship between the objects and the processes that 
transform them? 
 
To answer these questions, data modeling methods make use of the entity relationship diagram (ERD). 
The ERD described in detail later in this section enables a software engineer to identify data objects and 
their relationships using a graphical notation. In the context of structured analysis, the ERD defines all 
data that are input, stored, transformed and produced within an application. 
 
The entity-relationship diagram focuses solely on data (and therefore satisfies the first operational analysis 
principle), representing a “data network” that exists for a given system The ERD is especially useful for 
applications in which data and the relationships that govern data are complex. Unlike the data flow 
diagram data modeling considers data independently of the processing that transforms the data. 
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15.3.1 Data Objects, Attributes and Relationships 
 
The data model consists of three interrelated pieces of information: the data objects the attributes that 
describe the data object and the relationship that connect data objects to one another. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.2  Data objects, attributues, and relationships 
 
Data objects  A data object is a representation of almost any composite information that must be 
understood by software. By composite information we mean something that has a number of different 
properties or attributes. Therefore “width “ would not be a valid data object, but dimensions 
(incorporating height, width and depth) could be defined as an object. 
 
A data object can be an external entity (e.g., anything that produces or consumes information), a thing 
(e.g., a report or a display), an organizational unit (e.g., accounting department), a place (e.g., a 
warehouse), or a structure (e.g., a file). For example a person or a car can be viewed as a data object in the 
sense that either can be defined in terms of a set of attribute. The data object description incorporates the 
data object and all of its attributes. 
 
Data objects are related to one another. For example, person can own car where the relationship own 
connotes a specific connection between person and car. The relationships are always defined by the 
context of the problem that is being analyzed. 
 
A data object encapsulates data only—there is no reference within a data object to operations that act on 
the data. Therefore, the data object can be represented. The headings in the table reflect attribute of the 
object. In this case, a car is defined in terms of make, model, ID# body type, color and owner. The body of 
the table represents specific instances of the data object. For example, a Chevy Corvette is an instance of 
the data object car. 
 
Attributes : Attributes define the properties of a data object and take on one of three different 
characteristics. They can be used to (1) name an instance of the data object, (2) describe the instance, or (3) 
make reference to another instance in another table. In addition, one or more of the attributes must be 
defined as an identifier that is the identifier attribute becomes a “key” when we want to find an instance of 
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the data object. In some case, values for the identifier(s) are unique, although this is not a requirement. 
Referring to the data object car, a reasonable identifier might be the ID# 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.3 Tabulator representation of data objects 
 
The set of attributes that is appropriate for a given data object is determined through an understanding of 
the problem context. The attributes for car described above might serve well for an application that would 
be used by a Department of Motor Vehicles, but these attributes would be useless for an automobile 
company that needs manufacturing control software. In the latter case the attributes for car might also 
include ID#, body type, and color, but many additional attributes (e.g., interior code, driver train type, 
trim package designator, transmission type) would have to be added to make car a meaningful object in 
the manufacturing control context. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.4 Relationships 
 
Relationship   Data object are connected to one another in a variety of different ways. Consider two data 
objects, book and bookstore. Those objects can be represented using the simple notation illustrated. A 
connection is established between book and bookstore because the two objects are related. But what are 
the relationships? To determine the answer, we must understand the role of books and bookstores within 
the context of the software to be built. We can define a set object relationship pairs that define the relevant 
relationships. 
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• a bookstore orders books  

• a bookstore displays books 

• a bookstore stocks books 

• a bookstore sells books 

• a bookstore returns books 

 
The relationships orders, displays, stocks, sells, and returns define the relevant connections between book 
and bookstore. Figure 15.4b illustrate three object-relationship pairs graphically. 
It is important to note that object relationship pairs are bi-directional; that is they can be read in either 
direction. A bookstore orders books or books are ordered by a boolstore. 
 

15.3.2 Cardinality and Modality 
 
the basic elements of data modeling – data objects, attributes and relationships—provide the basis for 
understanding the information domain of a problem. However additional information related to these 
basic elements must also be understood. 
 
We have defined a set of objects and represented the object relationship pairs that bind them. But a simple 
pair that states: object X relates to object Y does not provide enough information for software engineering 
purposes. We must understand how many occurrences of object X are related to how many occurrences of 
object Y. This leads to a data-modeling concept called cardinality. 
 
Cardinality The data model must be capable of representing the number of occurrences of objects in a 
given relationship. Tillmann [TIL93] defines the cardinality of an object relationship pair in the following 
manner: 
 
Cardinality is the specification of the number occurrence of one [object] that can be related to the number 
of occurrences of anther [object]. Cardinality is usually expressed as simply ‘one ‘ or ‘many’ For example a 
husband can have only one wife while a parent can have many children. Taking into consideration all 
combination of ‘one’ and ‘many’ two [objects] can be related as 
 
• One-to-one (1:1)—An occurrence of [object] ‘A’ can relate or one and only one occurrence of [object] 

‘B’ can relate to only one occurrence of ‘A’. For example, a husband can have only one wife and a wife 
only one husband. 

 
• One-to-many (1:N)—One occurrence of [object] ’A’ can relate to more than one occurrences of [object] 

of ’B’; but an occurrence of ‘B’ can relate to only one occurrence of ‘A’. For example, a mother can 
have many children, but a child can have only one mother. 

 
• Many-to-many – An occurrence of [object] ‘A’ can relate to one or more occurrences of ‘B’; while an 

occurrence of ‘B’ can relate to one or more occurrences of ‘A’. For example an uncle can have many 
nephews, while a nephew can have many uncles 

 
Cardinality defines “ the maximum number of object relationships that can participate in a 
relationship”[TIL93]. It does not; however provide an indication of whether or not a particular data object 
must participate in the relationship. To specify this information the data model adds modality to the object 
relationship pair. 
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Modality The modality of a relationship is zero if there is no explicit need for the relationship to occur to 
the relationship is optional. The modality is 1 if an occurrence of the relationship is mandatory. To 
illustrate consider software that is used by a local telephone company to process requests for field service. 
A customer indicates that there is a problem. If the problem is diagnosed as relatively simple, a single 
repair action occurs. However if the problem is complex, multiple repair actions may be required. 
Figure15.5 illustrates the relationship cardinality and modality between the data objects customer and 
repair action. 
 
In the figure, a 1 to much cardinality relationship is established. That is a single customer can be provided 
with zero or many repair actions.  
 
On the relationship connection closest too the data object rectangles indicate cardinality. The vertical bar 
indicates 1, and the three-pronged fork indicates many. Modality is indicated by the symbols that are 
further away form the data object rectangles. The Second vertical bar on the left indicated that there must 
be a customer of r a repair action to occur. The circle on the right indicates that there may be no repair 
action required for the type of problem reported by the customer.  
 
15.3.3 Entity-Relationship Diagrams 
 
The object-relationship pair is the cornerstone of the data model. These pairs can be represented 
graphically using the entity relationship diagram (ERD) 5 The ERD was originally proposed by Peter Chen 
[CHE77] for the design of relational database systems and has been extended by others. A set of primary 
components is identified for the ER: data objects, attributes, relationships and various type indicators. The 
primary purpose of the ERD is to represent data objects and their relationships. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.5  Cardinality and modality 
 
Rudimentary ERD notation has already been introduced in Section 15.3 Data objects are represented by a 
labeled rectangle. Relationships are indicated with a labeled line connecting objects. In some variations of 
the ERD the connecting line contains a diamond that is labeled with the relationship connection between 
data objects and relationships are established using a variety of special symbols that indicate cardinality 
and modality. (Section 15.3.2) 
 
The relationship between data objects card and manufacturer would be represented as shown in Figure 
15.6 One manufacturer build one or many cars. given the context implied by the ERD, the specification of 
the data object car (see the data object table) By examining the symbols at the end of the connection line 
between objects it can be seen that the modality of both occurrences is mandatory (the vertical lines). 
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Figure 15.6  A simple ERD and data object table  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.7  An expanded ERD 
 
Expanding the model, we represent a grossly oversimplified ERD (Figure 15.6) of the distribution element 
of the automobile business. New data objects shipper and dealership are introduced. In addition new 
relationship transports, contracts, licenses and stocks—indicate how the data objects contained in the ERD 
would have to be developed according to the rules introduced earlier in this chapter. 
 
In addition to the basic ERD notation introduced in Figures 15.6 and 15.7 the analyst can represent data 
object type hierarchies. In many instances a data object hierarchies. In many instances, a data object may 
actually represent a class or category of information For example; the data object car can be categorized as 
domestic, European, or Asian. The ERD notation shown in Figure 15.8 represents this categorization in the 
form of a hierarchy. 
 
ERD notation also provides a mechanism that represents the associativity between objects. An asssociative 
data object is represented as shown in Figure 15.9. In the figure the data objects that model individual 
subsystem are each associated with the data object car. 
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Figure 15.8 Data object type hierarchies 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.9 Associating data objects 
 
Data modeling and the entity relationship diagram provide that analysis with a concise notation for 
examining data within the context of a data processing application. In most cases, the data modeling 
approach is used to create one piece of the analysis model, but it can also be used for database design and 
to support any other requirements analysis method. 
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15.4 Functional Modeling and Information Flow 

 
Information is transformed as it flows through a computer based system. The system accepts input in a 
variety of forms; applies hardware,software and human elements to transform input into output and 
pruoduces output in a variety of forms. Input may be a control  signal transmitted by a transducer a series 
of numbers typed by a human operator a packet of information transmitted on a network link, or a 
voluminous data file retrieved form a CD-ROM, The transforms may comprise approach of an expert 
system. Output may light a single LED or produce a 200-pate report. In effect we can create a flow model 
for any computer-based system, regardless of size and complexity. 
 
Structured analysis began as an information flow modeling technique. A computer-based system is 
represented as an information transform as shown in Figure 15.10 Overall function of the system is 
represented as a single information transform noted as a bubble in the figure. One or more inputs shown 
as labeled arrows originate from external entities represented as a box. The input drives the transform to 
produce output information (also represented as labeled arrows) that a is passed to the external entity. It 
should be noted that the model might be applied to the entire system or to the software element only. The 
key is to represent the information fed into and produced by the transform. 
 
15.4.1 Data Flow Diagrams 
 
As information moves through software it sis modified by as series of transformations. A data flow 
diagram is a graphical technique that depicts information flow and the transforms that are applied as data 
move form input to output. The basic form of a data flow diagram is illustrated in figure 15.10. The DFD is 
also known as a data flow graph or a bubble chart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.10 Information flow 
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Figure 15.11 Basic DFD notation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.12 Information flow refinement 
 
The data flow diagram may be used to represent a system or software at any level of abstraction. In fact, 

Y 

X 

W 

Z 
B 

Z2 Z1 

Z3 

V 

B 

A 
F 

f1 

f2 

f3 

f4 

f5 f7 

f6 

Z 

Y1 Y2 
Y 

X X1 

X2 

f41 f41 

f41 

f41 f41 

 Data 
object 

 

External 
entity 

A producer or consumer of information that resides outside 
the bounds of the system to be modeled 

A repository of data that is to be stored for use by one or more 
processes; may be as simple as a buffer or queue or as 
sophisticated as a relational database. 

A data object: the arrow head indicates the direction of data flow 

A transformer of information(a function) that resides within 
the bounds of the system to be modeled 

 
Process 

Data Store 



Analysis Modeling- I 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 187 

DFDs may be partitioned into levels that represent increasing information flow and functional detail. 
Therefore the DFD provides a mechanism for functional modeling as well as information flow modeling. 
In so doing it satisfies the second operational analysis principle (i.e., creating a functional model) . 
 
A level 0 DFD also called a fundamental system model or a context model represents the entire software 
element as a single bubble input and output data indicated by incoming outgoing arrows respectively. 
Additional processes and information flow paths are represented as the level 0 DFD is partitioned to 
reveal more detail. For example a level 1 DFD might contain five or six bubbles with interconnecting 
arrows. Each of the processes represented at level 1 are sub functions of the overall system depicted in 
each context model. 
 
The basic notation  used to create a DFD is illustrated in Figure 15.11. A rectangle is used to represent an 
external entity that is a system element (e.g., hardware, a person, another program) or another system that 
produces information for transformation by the software or receives information produced by the 
software. A circle represents a process or transform that is applied to data and changes it in dome way. An 
arrow represents one or more data items or data objects. All arrows on a data flow diagram should be 
labeled. The double line represents data store— stored information that is use by the software. The 
simplicity of DFD notation is one reason why structured analysis techniques are the most widely used. 
 
It is important to note that no explicit indication of the sequence of processing is supplied by the diagram. 
Procedure or sequence may be implicit in the diagram, but explicit procedural representation is generally 
delayed until software design. 
 
As we noted earlier each of the bubbles may be refined or layered to depict more detail. Figure 15.12 
illustrates this concept. A fundamental model for system F indicates the primary input is A and ultimate 
output is B We refine the F model into transforms f1 to f7. Note that information flow continuity must be 
maintained that is input and output to each refinement must remain the same. The concept sometimes 
called balancing is essential for the development of consistent models Further refinement of f4 depicts 
detail in the form of transforms f41 to f45. Again the input (X, Y) and output (Z) remain unchanged. 
 
The data flow diagram is a graphical tool that can be very valuable during software requirements analysis. 
However the diagram can be misinterpreted if its function is confused with the flowchart. A data flow 
diagram depicts information flow without explicit representation of procedural logic (e.g., conditions or 
loops). It is not a flowchart with rounded edges! 
 
The basic notation used to develop a DFD is not in itself sufficient to describe requirements for software. 
For example an arrow show in a DFD represents a data object that is input to or output from a process. A 
data store represents some organized collection of data. But what is the content of the data implied by the 
arrow to depict by the store? If the arrow (or the store) represents a collection of objects, what are they? 
These questions are answered by applying another component of the basic notation for structured analysis 
the data dictionary. The format and use of the data dictionary are presented later in this chapter. 
 
Finally the graphical notation represented in Figure 15.11 must be augmented with descriptive text. A 
processing specification can be used to specify the processing details implied by a bubble within a DFD. 
The processing specification describes the input to a function the algorithm that is applied to the input and 
the output that is produced. In addition the PSPEC indicates restrictions and limitations imposed on the 
process and design constraints that may influence the way in which the process will be implemented.  
 
 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 188 

15.4.2 Extensions for Real-Time Systems 
 
Many software applications are time dependent and process as much or more control oriented 
information as data. A real time system must interact with the real worked in a time frame dictated by the 
real world. Aircraft avionics manufacturing process control consumer products and industrial 
instrumentation are but a few of hundreds of real-time software applications. 
 
To accommodate the analysis of real-time software, a number of extensions to the basic notation for 
structured analysis have been proposed. These extensions, developed by Ward and Mellor and Hatley and 
Pirbhai and shown in figure 15.13 enable the analyst to represent control flow and control processing as 
well as data flow and processing 
 
15.4.3 Ward and Mellor Extensions 
 
Ward and Mellor extend basic structured analysis notation to accommodate the following demands 
imposed by a real-time system: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.13  Extended structured analysis  notation  for real-time systems developed by Ward and Mellor 
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In a  significant percentage of real-time application, the system must monitor time-continuous information 
generated by some real world process. For example a real time test monitoring system for gas turbine 
engines might be required to monitor turbine speed, combustor temperature and a variety of pressure 
probes on a continuous basis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.14 Time continious Data Flow 
 
Conventional data flow notation does not make a distinction between discrete data and time – continuous 
data. An extension to basic structured analysis notation, shown in figure 15.14 provides a mechanism for 
representing time-continuous flow, and a single headed arrow in used to indicate discrete data flow. In 
the figure, monitored temperature is measured continuously while a single value for temperature set-
point is also provided. The process shown in figure produces a time-continuous output, corrected value. 
 
The distinction ion between discrete and time-continuous data flow has important implication for both the 
system engineer and the software designer. During the creation of the system model, a system engineer 
will be better able to isolate those processes that may be performance critical (it is likely that the input and 
output of time-continuous data will be performance sensitive). As the physical or implementation model 
is created, the designer must establish a mechanism for collection of time-continuous data. Obviously, the 
digital system collects data in a quasi-continuous fashion using techniques such as high-speed polling. The 
notation indicates where analog to digital hardware will be required and which transforms are likely to 
demand high-performance software. 
 
In conventional data flow diagrams, control or event flows are not represented explicitly. In fact, the 
analyst is cautioned to specifically exclude the representation  of control flow from the data flow diagram. 
This  exclusion is overly restrictive when real-time applications are considered and for this reason, a 
specialized notation for representing event flows and control processing has been developed. Continuing 
the convention established for data flow diagrams, data flow is represented using a solid arrow. Control 
flow however is represented using a dashed or shaded arrow. A process that handles only control flows, 
called a control process, is similarly represented using a dashed bubble. 
 
Control flow can be input directly to a conventional process or into a control process. Figure 15.15 
illustrates control flow and processing as it would be represented using Ward and Mellor notation. The 
figure illustrates a top-level view of data and control flow for a manufacturing cell. As components to be 
assembled by a robot  are placed on fixtures, a status bit is set within a parts status buffer ( a control store) 
that indicates the presence or absence of each component. Even information contained within the  parts 
status buffer is passed as a bit string to a process, monitor fixture and operator interface. The process will 
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read operator commands only when the control information, bit string, indicates that all fixtures contain 
components. An event flag, start/stop flag, is sent to robot initiation control, a control process that enables 
further command processing. Other data flows occur  as a consequence of the process activate event that is 
sent to process robot commands. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.15 Data and control flows using ward and mellor notation 
 
 
In some situations multiple instance of the same control or data transformation process may occur in a 
real-time system. This can occur in a multitasking environment when tasks are spawned  as a  result of 
internal processing or external events. For example a number of part  status buffers may be monitored so 
that different robots can be signaled at the appropriate time. In addition, each robot may have its own 
robot control system. The Ward and Mellor notation used to represent multiple equivalent instances of the 
same process is shown in figure 15.13. 
15.5 Hatley and Pirbhai Extensions 
 
The Hatley and Pirbhai extensions to basic structured analysis notation focus less on the creation of 
additional graphical symbols and more on the representation and specification of the control oriented 
saspects of the software. Unlike ward and mellor hately and pirbhai suggest that dashed  and solid 
notation be represented separately.  Therefore a  control flow diagram (CFD) is defined.  The CFD  
contains the same process as the DFD, but shows control flow rather than data flow.  Instead of 
representing control process directly within the flow model, a notational reference to a control 
specification is used.   In  essence th  the solid bar can be viewed  as a  “window “ into an “executive” that 
controls the process represented in the DFD based on the event that is passed through the window.  The 
CSPEC, described in detail in section 12.6.4 is used to indicate (1) how the software behaves when an 
event or control signal is sensed and  (2) which process are invoked as an consequence of the occurrence of 
the event.  A process specification is used to describe the inner workings of a process represented in a flow 
diagram. 
 
Using the notation described in figure 15.11  along with additional information contained in PSPECs and  
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CSPECs  hatley and pirbhai create a model of a a real time system.  Data flow diagrams are used to 
represent data and the processes that manipulate it.  Control flow diagrams show how events flow among 
processes and illustrate those external events that cause various process to be activated.  The 
interrelationship between the process various processes and control models.  The process model  is 
connected to the control model through data conditions.  The control model is connected to the process 
model through process activation information contained in the  CSPEC. 
 
A data condition occurs whenever  data input to a process results in a control output.  The process check 
& convert pressure implements the algorithm described in the  PSPEC  pseudocode shown.  When the 
absolute tank pressure is greater than an allowable maximum, an above pressure event is generated.  Note 
that when hatley and pirbhai notation is used, the data flow is shown as part of a DFD.  While the control 
flow is noted separately as part of a control flow diagram.  To determine what happens when this event 
occurs, we must check the  CSPEC. 
 
The control specification contains a number of important modeling tools.  A process activation table is 
used to indicate which processes are activated by a given event that flows through the vertical bar.  For 
example, a process activation table(PAT) might  indicate  that the above pressure event would  cause a 
process reduce tank pressure to be invoked.  In addition to the  PAT  the CDPEC may contain a state 
transition diagram(STD).   In addition to the  PAT, the  CSPEC  may  contain a state transition diagram.  
The STD is a  behavioral model that relies on the definition of a set of system states and is described in the 
following section. 
 

15.6 Short Summary 
 

 Structured analysis the most widely used of requirements modeling moethods relies on data 
modeling and flow modeling to create the basis for a comprehenisve analysis model. 

 
 Data and control flow diagrams are used as a basis for representing the transformation of data and 

control. 
 
15.7 Brain Storm 

 
1. Explain briefly about Data Modeling ? 

2. Discuss about cardinality and Modality ? 

3. Write a note on Functional Modeling and Information flow? 

4. Explain briefly about Data flow Diagram ? 

5. Short note on Hately and Pirbhai Extension ? 

 
 

 
 
 
 

 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 192 

 
 

Lecture 16 
 
 
 
 
 

Analysis Modeling - II 
 
 
 
 
 

 

Objectives 

In this lecture you will 
learn the following 

 
 About Behavioral Modeling   

 About Mechanics of Structured Analysis 

 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 



Analysis Modeling- II 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 193 

 
 
 
 
 
 
 
 
 

Coverage Plan 
 
 
 
 
 

Lecture 16 
 
16.1 Snap Shot 

16.2 Behavioral modeling 

16.3 The Mechanics Of Structured Analysis 

16.4 Creating an entity relationship diagram 

16.5 Creating a Data Flow Model 

16.6 Creating a Control Flow Model 

16.7 The Control specification 

16.8 The process Specification 

16.9 Short Summary 

16.10 Brain Stom 

 
 
 
 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 194 

16.1 Snap Shot  
 
In this lecture, we are going to learn about Behavioral Modeling, Mechanics of Structured Analysis, Entity 
Relationship Diagram, Data Flow Model and Control Flow Model and also about Control and Process 
Specification. 

 
16.2 Behavioral Modeling 

 
Behavioral modeling is an operational principle for all requirements analysis methods.  Yet only extended 
versions of structured analysis provide a notation for this type of modeling.  The state transition diagram 
represents the behavior of a system by depicting its states and the events that cause the system to change 
state.  In addition, the STD indicated what actions are taken as a consequence of a particular event. 
 
A state is any observable mode of behavior.  For example states for a monitoring and control system for 
pressure vessel might be monitoring state, alarm state, pressure release state, and so on.  Each on these 
states represents a mode of behavior of the system.  A state  transition diagram indicated how the system 
moves from state to state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16.1  The relationship  between data  and  control madels 
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are implied by the level 1 DFD  shown in figure 16.3.  It should be noted that additional refinement of the 
data flow and definition of each data item  would be required. 
 
The control flow for the photocopier software is shown entering and  exiting individual process and the  
CSPEC “window”.  For example, the paper feed status  and  start/stop events flow into the  CSPEC  bar.  
This implies that each of these events will cause some  process represented in the  CFD  to be activated.  If 
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we were to examine the  CSPEC  internals, the start/stop event would be shown to activate/deactivate the 
manage copying process.  Similarly, the jammed event ( part of paper feed status) would activate perform 
problem diagnosis.  It should be noted that all vertical bars within the  CFD  refer to the same  CSPEC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16.2 Data  Conditions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16.3  Level 1 CFD for photocopier Software 
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An event flow can be input directly into a process as shown with reprofault.  However, this flow does not 
activate the process, but rather provides control information for the process algorithm.  Data flow arrows 
have been lightly shaded for illustrative purposes,  but in reality they are not shown as part of a control 
flow diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16.4 Level 1 CFD  for photocopier software 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16.5  Simplified state transition diagram for photocopier software 
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A simplified state transition diagram for the photocopier software described above is shown  in figure 
16.5.  The rectangles represent system states   and the arrows represent transitions between states. And the 
arrows represent transitions between states.  Each  arrow is labeled with a ruled expression.  The top value 
indicates the event(s) that cause the transition to occur.  The bottom value indicates  the action that occurs 
as a contransition to occur.  The bottom  value indicates the action that occurs as a consequence of the 
event.  Therefore, when the paper tray is full and the start button is pressed, the system moves from the 
reading commands state to the making copies state.  Note that states do not necessarily correspond to 
processes on a one to one basis. 
 
For example, the state making copies would encompass both the manage copying and produce user 
displays  processes shown in figure 16.4. 
 

16.3 The Mechanics of Structured Analysis 
 
In the previous section, we discussed basic and extended notation for structured  analysis.  To be used 
effectively in software requirements analysis, this notation must be combined  with a ser of  heuristics that 
enable a software engineer to derive a good analysis model,  to illustrate the use of these heuristics an 
adapted version of the hatley and pirbhai extensions to the basic structured analysis notation will be used 
throughout  the remainder of this lecture. 
 
 In the sections that flow we examine each of the steps that should be applied to develop complete and 
accurate models using structured analysis.  Through this discussion, the notation introduced will be used, 
and other notational forms, alluded to earlier, will be presented in some detail. 
 

16.4 Creating an Entity Relationship Diagram 
 
The entity relationship diagram enables a software engineer to fully specify the  data  objects that are 
input and output from a system, the attributes and define the properties of these objects, and the 
relationships between objects.  Like most elements of the analysis model, the   ERD is constructed in an 
iterative manner.  The following approach is taken; 
 
1. During  requirements gathering, customers are asked to list the “things” that the application or 

business process addresses.  These “things”  evolve into a list of input and output data objects as well 
as external entities that produce or consume information. 

2. Taking the objects  one at a time, the analyst  and customer define whether or not a connection exists 
between the data object and other objects. 

3. Wherever a connection exists, the analyst and customer create one or more object relationship pairs. 

4. For each  object relationship pair, cardinality and modality are explored. 

5. Step 2 through 4 are continued iteratively until all object relationship pairs have been defined.  It is 
common to discover omissions as this  process continues.  New objects and relationships will 
invariably be added as the number of iterations grows. 

6. The attributes of each entity are defined. 

7. An entity relationship  diagram is formalized and reviewed. 

8. Steps 1 through 7  are repeated until data modeling is complete 
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To illustrate the use of these basic guidelines, the safehome security system example is discussed in 
previous lecture.   A processing narrative for safehome is reproduced below: 
 
Safe Home software enables the homeowner to configure the security system when it is installed, monitors 
all sensors connected to the security system, and interacts with the homeowner through a keypad and 
function keys contained in the Safe Home control panel. 
 
During installation the Safe Home control panel is used to ‘program’ and configure the system. Each 
sensor is assigned a number and type, a master password in programmed for arming and disarming the 
system, and telephone number(s) are input for dialing when a sensor event occurs. 
 
When a sensor event is recognized, the software invokes an audible alarm attached to the system. After a 
delay time that is specified by the homeowner during system configuration activities, the software dials a 
telephone number of a monitoring service, provides information about the location, reporting and the 
nature of the event that has been detected. The telephone number will be redialed every 20 seconds until 
telephone connection is obtained. 
 
All interaction with Safe Home is managed by a user-interaction subsystem that reds input provided 
through the keypad and function keys, displays prompting messages and system status on the LCD 
display. Keyboard interaction takes the following form… 
 
Discussin between the analyst  and the customer indicate the following list of things that are relevant to  
the problem. 
 
• Homeowner 
• Control panel 
• Sensors 
• Security system 
• Monitoring service 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16.6 Establishing connections 
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Taking   these things one at a time, connections are explored.  To accopliish this, each object is drawn and 
lines connecting the objects are noted.  For exmple, figure 16.6 shows that a direct connection exists 
between the homeowner and control panel, security system, and monitoring service.  A single connection 
exists between sensor and security system, and so forth. 
 
Once all connections have been defined, one or more object relationship pairs are identified for each 
connection.  For example, the connection between sensor and security system is determined to have the 
following object relationship pairs. 
 
Security system monitors sensors 
Security system enables/disables sensor 
Security system tests sensor 
Security system programs sensor 
 
Each of the above object relationship pairs is analyzed to determine cardinality and modality.  For 
example in the object relationship pair security system monitors sensor, the cardinality between security 
system and sensor is one to many.  The modality is one occurrence of security system and at least one 
occurrence of sensor.  Using the ERD notation introduced the connecting line between security system and 
sensor would be modified as shown in figure 16.7  similar analysis would be applied to all other data 
objects. 
 
Each object is studied to determine its attributes. Since we are considering the software that mist support 
SafeHome the attributes should focus on data that a must be stored to enable the system to operate. For 
example, the sensor object might have the following attributes: sensor type, internal identification number, 
Zone location and alarm level. 
 

16.5 Creating a Data Flow Model 
 
The data flow diagram (DFD) enables the software engineer to develop models of the information domain 
and functional domain at the same time. As the DFD is refined into greater levels of detail, the analyst 
performs an implicit functional decomposition of the system thereby accomplishing the fourth operational 
analysis principle. At the same time, the DFD refinement results in a corresponding refinement of data as 
it moves through the processes that embody the application. 
 
A few simple guidelines can aid immeasurably during  derivation of a data flow diagram;(1) The level  
data flow diagram should depict the software/system as a dingle bubble; (2) primary input and output 
should be carefully noted;(3) refinement should begin by isolating  candidate processes data objects and 
stores to be represented at the n4extlevel; (4)all arrows and bubbles should be labeled with meaningful 
names; (5) information flow continuity must be maintained from level to level; and (6) one bubble data 
time should be refined. There is a natural tendency to overcomplicate the data flow diagram. This occurs 
when the analyst attempts to overcomplicate the data flow diagram. This occurs when the analyst 
attempts to show too m8ich detail too early or represents procedural aspects of the software in lieu of 
information flow. 
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Figure 16.7 Developing relationships and cardinality / modality 
 
Again considering the Safe Home product a level 0 DFD for the system is shown in Figure 16.8. The 
primary external entities (boxes) produce information for use by the system and consume information 
generated by the system. The labeled arrows represent data objects or data object type hierarchies. For 
example user commands and data encompasses all configuration commands all activations/deactivation 
commands all miscellane9ous interactions and all data that are input to quality or expand a command. 
 
The level 0 DFD is  now expanded into a level 1 model . But how do we proceed?  A simple, yet effective 
approach is to perform a “ Grammatical parse” on the processing narrative that describes the context level 
bubble. That is we isolate all nouns and verbs in the narrative. To illustrate we again reproduce the 
processing narrative underlining the first occurrence of all nouns and italicizing the first occurrence of all 
verbs. (It should be not3ed that nouns and verbs that are synonyms or have no direct bearing on the 
modeling process are omitted). 
 
SafeHome software enables the homeowner  to configure the security system  when it is installed monitors 
all sensors  connected to the security system and interacts with the homeowner through a keypad  and 
function keys  contained in the SafeHome control panel.  
 
During installation, the SafeHome control panel is used to “program “ and configure the system. Each 
sensor is assigned a  number  and type  a master password in programmed for arming and disarming the 
system and telephone numbers are input for dialing when a sensor event occurs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16.8 Context level DFD for safehome 
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When a sensor event is recognized, the software invokes an audible alarm attached to the system. After a 
delay time  that is specified by the homeowner during system configuration activities the software dials a 
telephone number of a monitoring service, provide information about the location, reporting and the 
nature of the event 20 seconds until telephone connection is obtained. 
 
All interaction with SafeHome is managed by a user-interaction subsystem  that reads input  provided 
through the keypad and function keys, display prompting messages  and system status  on the LCD 
display. Keyboard interaction takes the following form… 
 
In examining the grammatical parse, we see a pattern begin to emerge. All verbs are SafeHome processes ; 
that is they may ultimately be represented as bubbles in a sybsequent6 DFD. All nouns are either external 
entities data or control objects(arrows) or data stores(double lines) . Note further that nouns and verbs can 
be attached to one another(e.g., sensor  assigned number and type) Therefore by performing a 
grammatical parse on the processing narrative for a bubble at any DFD level we can generate much useful 
information about how ot proceed with the refinement to the next level. Using this information a level 1 
DFD is shown in Figure 16.9 the context level process shown in Figure 16.8 has been expanded into seven 
processes derived from an examination of the grammatical parse. Similarly the information flow between 
processes at level 1 has been derived from the parse.  
 
It should be noted that information flow continuity is maintained between levels 0 and 1. Elaboration of 
the content of inputs and output a DFD levels 0 and 1 is postponed.  
 
The processes represented at DFD continues until each bubble performs a simple function. That is until 
the process represented by the bubble performs a function that would be easily implemented as a program 
component. In the previous lecture we discuss a concept called cohesion that can be used to assess the 
simplicity of a given function. For now we strive to refine DFDs until each bubble is “single minded”. 
 

 
16.6  Creating a Control Flow Model 

 
For many types of data processing applications the data model and the data flow diagram, are all that is 
necessary to obtain meaningful insight into software requirement. As we have already noted however 
there exists a large class of applications that are driven by events rather than data that produce  control 
information rather than reports or displays and that process information with heavy concern for time 
performance,. Such application require the use of control flow modeling in addition to data flow 
modeling. 
 
The graphical notation required to create a control flow diagram (CFD) was presented.  To review the 
approach for creating a CFED a data flow model is “stripped” of all data flow arrows10 Events and control 
items (dashed arrows) are then added to the diagram and a “window” (a vertical bar) into the control 
specification is shown. But how are events selected? 
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Figure 16.9  Level 1 DFD   for safehome 
 

 
We have already noted that an event or control item is implemented as a Boolean value(e.g., true or false, 
on or off, 1 or 0) or a discrete list of conditions (empty, jammed ,full). To select potential candidate events 
the following guidelines are suggested. 
• List all sensors that are “read ” by the software 

• List all interrupt conditions 

• List all “switches” that are actuated by an operator 

• List all data conditions. 

 

• Recalling the noun-verb parse that was applied to the processing narrative review all “ control items” 
as possible CSPEC inputs/outputs 

• Describe the behavior of a system by identifying its states; identify how each state is reached and 
define the transitions between states. 

• Focus on possible omissions – a very common arror in specifying control (e.g., ask: “Is there any other 
way I can get to this state or exit from it?”) 
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 Figure  : 16.10 Level 2 DFD  that refines the monitor sensors process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16.11  Level 1 CFD for safehome 
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A level 1 CFD for SafeHome  software is illustrated in Figure 16.11 Among the events and control items 
noted are sensor event (i.e., a sensor has been tripped),blink flag (a signal to blink the LCD display) and 
start/stop switch ( a signal to turn the system on or off) An event flowing into the CSPEC window from 
the outside world implies that the CSPEC will activate one or more of the processes shown in the CFD. 
When a control item emanates from a process and flows into the CSPEC window, control and activation of 
some other process or an outside entity is implied. 

 
16.7 The Control Specification 

 
The control specification (CSPEC) represents the behavior of the system (at the level from which it has 
been referenced) in two different ways. The CSPEC contains a state transition diagram(STD)that is a 
sequential specification of behavior It can also contain a process activation table (PAT) a combinatorial 
specification of behavior. The underlying attributes of the CSPEC were introduced.  It is now time to 
consider an example of this important modeling notation for structured analysis. 
 
Figure 16.12 depicts a state-transition diagram for the level 1 flo2w model for SafeHome. The labeled 
transition arrows indicate how the system responds to events as it traverses the four states defined at this 
level. By studying the STD a software engineer can determine the behavior of the system and more 
important can ascertain whether there are “holes” in the specified behavior. For example the STD 
indicates that the only transition from the reading user input state occurs when the start/stop switch is 
encountered and a transition to the monitoring system status state occurs. Yet there appears to be no way 
other than the occurrence of sensor event that will allow the system to return to reading user input. This is 
an error in specifications and to determine whether there are any other anomalies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 16.12 State transition diagram for safehome 
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A somewhat different move of behavioral representation is the process activation table(PAT) The PAT 
represents information contained in the STD in the context of processes not states. That is the table 
indicates which processes in the flow model will be invoked when an event occurs. The PAT can be used 
as a guide for a designer who must build an executive that controls the processes represented at this level. 
A PAT for the level 1 flow model of SafeHome software is shown in Figure 16.13. 
 
The CSPEC describes the behavior of the system but it does not give us any information about the inner 
working of the processes  that are activated as a result of this behavior. The modeling notation that 
provides this information is discussed in the next section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  16.13 process activation table for safehome 
 

16.8 The process Specification 
 
The process specification (PSPEC) is used to describe all flow model processes that appear at the final level 
of refinement. The content of  the process specification can include narrative text a program design 
language(PDL)  description 11 of the process algorithm mathematical equations tables diagrams or charts 
By providing a PSPEC to accompany each bubble in th flow model, the software engineer creates a “mini-
spec” that can serve as a first step in the creation of the software requirements specification and as a guide 
for design of the program component that will implement the process.  
 
To illustrate the use of the PSPEC, consider a software application in which the dimension of various 
geometric objects are analyzed to identify the shape of the object. Refinement of a context level data flow 
diagram continues until level 2 processes are derived. One of these named analyzed triangle. The PSPEC 
for analyze triangle is first written as an English language narrative as shown in the figure. In additional 
algorithmic detail is desired at this sage a program design language representation may also be included 
as part of the PSPEC. However many believe that the PDL version should be postponed until design 
commences. 

Input events 

Sensor event   0 0 0 0 1 0 

Blink flag   0 0 1 1 0 0 

Start stop switch   0 1 0 0 0 0 

Display action status Complete 0 0 0 1 0 0 

In-progress   0 0 1 0 0 0 

Time out    0 0 0 0 0 1 

Output  
Alarm signal   0 0 0 0 1 0 

Process activation 

Monitor and control system 0 1 0 0 1 1 

Activate/deactivate system 0 1 0 0 0 0 

Display messages and status 1 0 1 1 1 1 

Interact with user   1 0 0 1 0 1 
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16.9 Short Summary 
 

 Behavioral analysis is an operatiional method for all requirement analysis method. 
 

 The entity relationship diagram enables a software to fully specify data objects that are input and 
output from a system, the attributes and the definen the properties of the object and the relationship 
between the objects. 

 
 When a sensor event is recognized the software invokes an alarm attached to the system. 

 
16.10 Brain Storm 

 
1. Explain briefly about the Behavioral Modeling ? 

2. Explain the mechanisam of Structured Analysis ? 

3. How do you create an Entity Relation Diagram ? 

4. How do you create Data flow and Control Flow Model ? 

5. Explain briefly about control and process specification ? 
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17.1 Snap Shot 
 

In this lecture we are going to learn about Data Dictionary, Data Structured System Development Jacks on 
system Development and also about Structured analysis and Design Techniques. 

 
17.2 Data Dictionary 

 
The analysis model encompasses representations of data objects function and control.  In each 
representation data objects and /or control items play a role. Therefore it is necessary to provide an 
organized approach fo rrepresenting the characteristics of each data objects and control item. This is 
accomplished with the data dictionary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17.1 Process specification for a DFD  process 
 
The data dictionary has been proposed as a quasi –formal grammar for describing the content of objects 
defined during structured analysis. This important modeling notation has been defined in the following 
manner[YOU89] 
  
The data dictionary is an organized listing of all data elements that are pertinent to the system with 
precise rigorous definitions so that both user and system analyst will have a common understanding of 
inputs outputs components of stores and (even) intermediate calculations. 
Today the data dictionary is almost always implemented as part of a CASE  “structured analysis and 
design too;” Although the format of dictionaries varies from tool to tool most contain the following 
information: 
 
• Name—the primary name of the data or control item, the data store or an external entity. 

• Alias—other names used for the first entry 

• Where-used /how-used—a listing of the processes that use the data or control item and how it is 

Side dimension of triangle 

Error message 

 Triangle type 

Analyze 
Triangle 

PSPEC: Processing Narrative for analysis Triangle 

The analyze-triangle process acceps values A, B, and C, that  represent 
the side dimensions of a triangle. The process test the dimension values 
to determine whether all values are positive. If a negative value is 
encountered an error message is produced. The process evaluates valid 
input data to determine whether the dimensions define a valid triangle 
and if so, what type of triangle –equilateral, isosceles or scalene – is 
implied by the dimensions. The type is output. 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 210 

used( e.g., input to the process output from the process ,as a store as an external entity) 

• Content description—a notation for representing content 

• Supplementary information—other information about data types preset values(if known) restrictions 
or limitations etc., 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17.2 Process specification using PDL for  a DFD  process 
 
Once a data object or control item name and its aliases are entered into the data dictionary consistency in 
naming can be enforced. That is if an analysis team member decides to name a newly derived data item 
xyz but xyz is already in the dictionary the CASE tool supporting the dictionary posts a warning to 
indicate duplicate names. This improves the consistency of the analysis model and helps to reduce errors. 
 
Where-used/how-used” information is recorded automatically from the flow models. when a dictionary 
entry is created, the CASE tool scans DFDs and CFDs to determine which processes use the data or control 
information and most important benefits for he dictionary. During analysis there is an almost continuous 
stream of changes. For large projects it is often quite difficult to determine the impact of a changes. For 
large projects it is often quite difficult to determine the impact of a change. Many a software engineer has 
asked” Where is this data object used? What else will have to change if we modify it? What will the overall 
impact of the change be?” Because the data dictionary can be treated as a database the analyst can ask 
“where-used/how-used” questions  and get answers to queries noted above. 
 
The notation used to develop a content description illustrated in? Figure 17.3 enables the analyst to 
represent composite data in one of the three fundamental ways that it can be constructed 

Side dimension of triangle 

Error Message 

triangle type 

Analyze 
Triangle 

PSPEC: Processing Narrative for analysis Triangle 

Procedure analyze triangle; 
Read side dimensions 
   if any dimension is negative then produce error message; 
   if the largest dimension is less than the sum of the others 
   then begin 
   determine number of equal sides; 
    if three sides are equal then type is equilateral; 
    if  two sides are equal then type is scalene; 
    output triangle type; 
    end; 
    else output type =0; indication that no triangle exists; 
  endif 
endproc 
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1. as a sequence of data items 
2. as a selection from among a set of data items or 
3. as a repeated grouping of data items 
 
Each data item entry that represented as part of a sequence, selection or repetition may itself be another 
data object that needs further refinement within the dictionary. 
 
To illustrate the use of the data dictionary and the content description notation shown in Figure 17.3 we 
return to the level 2 DFD for the monitor system process for SafeHome shown in Figre 16.10.  In the figure 
the data item telephone number is specified as input. But what exactly is a telephone number ? It could be 
a 7 digit local number a 4 digit extension or a 25 digit long distance carrier sequence. The data dictionary 
procid4esus with a precise definition of telephone number for the DFD in question. In addition it indicates 
where and how this data item is used and any supplementary information that is relevant to it. The data 
dictionary entry begins a s follows: 
 
Name   :  Telephone number 
Aliases   :  None  
Where used/how used    Assess against setup(output) 
       Dial phone(input) 
Description  :  Telephone number= [local extension/outside number] 
 
The above content description may be read : telephone number is composed of either a local extension (for 
use in a large company ) or an outside number. Local extension and outside number represent composite 
data and must be refined further in other content description statements . Continuing the content 
description: 
 

Data construct Notation Meaning 
 = is composed of  
Sequence 
Selection 
Repelition 
 

+ 
[|] 
{}n 
( ) 
*    * 

And 
either-or 
n repetitions of 
optional data 
delimits comments 

 
Figure 17.3  Content description notation for a data dictionary 
 
Telephone number   =[local extension/outside number] 

Local extension  =[2001/2001…/2999] 

Outside number   =9+[local number/long distance number] 

Local number   =prefix+ access number 

Long distance number =(1) + area code+local number 

Prefix   =[795/799/874/877] 

Access number  =*any four number string* 

 
The content description is expanded until all composite data items(data objects )have been represented as 
elementary items (items that require no further expansion)or until all data objects are represented in terms 
that would be well down and unambiguous to all readers(e.g., area code is generally understood to mean 
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a 3 digit number that never starts with 0 or 1) It is also important to note that a specification of elementary 
data often restricts a system. For example the definition of prefix indicates that only four branch exchanges 
can be accessed locally. 
 
The data dictionary defines information items unambiguously. Although we might assume that the 
telephone number represented by the DFD in Figure 16.10 could accommodate a 25 digit long distance 
carrier access number the data dictionary content description tells us that such numbers are not part of the 
data that may be used. 
 
F9or large computer-based systems the data dictionary grows rapidly in size and complexity. In fact it is 
extremely difficult to maintain a dictionary manually. For this reason, CASE tools should be used. 
 

 
17.3  An Overview of other Classical Analysis Methods 

 
Over the years many other worth while software requirements analysis methods have been used 
throughout the industry while all follow the operational analysis principles each introduces a different 
notation and heuristics for constructing the analysis model. In this section we present a very brief 
overview of three of the more common methods. For further information the interested reader should 
refer to the references noted. 
 

17.4  Data Structured System Development 
 
Data Structured Systems Development (DSSD) also called the Warnier –Orr methodology evolved form 
pioneering work on information domain analysis conducted by J.D. Warnier[WAR74,WAR81]. Warnier 
developed a notation for representing information hierarchy using the three constructs for sequence 
selection and repetition and demonstrated that the software structure could be derived directly from the 
data structure. 
 
Ken Orr [ORR 77,ORR81]extended Warnier’s work to encompass a some what broader view of the 
information domain that has evolved into Data Structured Systems Development. DSSD considers 
information flow and functional characteristic as well as data hierarchy. 
 

17.5  Jackson System Development 
 
Jackson System Development (JSD) evolved out of work conducted by M.A. Jackson [JAC75,JAC83] on 
information domain analysis and its relationship to program and system design. Similar is some ways to 
Warnier’s  approach and DSSD, JSD focuses on models of the “real world” information domain. In 
Jackson’s words[JAC83], “[t]he developer begins by creating a model of the reality with which the system 
is concerned the reality which furnishes its the system’s subject matter…” 
 
To conduct JSD the analyst applies the following steps: 
 

Entity Action Step. Using an approach that is qui6te similar to the object-oriented analysis techniques 
entities (people objects or organizations that a system needs to produce or use information) and actions 
(the events that occur in the real world that affect entities) are identified. 
 
Entity Structure Step Actions that affect each entity are ordered by time and represented with Jackson 
Diagrams(a tree-like notation) 
 
Initial Modeling Step. Entities and action are represents as a process model connections between the 
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model and the real world are defined. 
 
Function Step. Functions that correspond to defined actions are specified. 
Implementation Step. Hardware and software are specified as a design 
The last three steps in JSD are closely aligned with system, or software design. 

17.6  SADT 
 
Structured analysis and design technique(SADT) is a technique that has been widely used as annotation 
for system definition, process representations, software requirements analysis and system/software 
design[ROS77.ROS85] SADT consists of procedures that allow the analyst to decompose 
software(or system) functions a graphical notation the SADT actigram and datagram that communicates 
the relationships of information (data and control) and function within software and project control 
guidelines for applying the methodology. 
 
The SADT methodology encompasses automated tools to support analysis procedures and a well-defined 
organizational harness through which the tools are applied. Review and milestone are specified allowing 
validating of developer-customer communication. 
 

17.7 Short Summary 
 

 Structured analysis, the most widely used of requirements modeling methods, relies on data 
modeling and flow modeling to create the basis for a comprehensive analysis model.  

 
 Using entity  relationship diagrams, the software engineer creates a representation of all data objects 

that are important for the system.   
 

 Data and control flow diagrams are used as a basis for representing the transformation of data and 
control.  At the same time, these models are used to create a functional model of the software and to 
provide a mechanism for partitioning function.   

 
 A behavioral model is created using the state transition diagram, and data content is developed with 

a data dictionary.  Process and control specifications provide additional elaboration of detail. 
 

 The original notation for structured analysis was developed for conventional data processing 
applications, but extensions now make the method applicable to real time systems.  Structured 
analysis is supported by an array of CASE  tools that assist in the creation of each element of the 
model and also help to ensure consistency and correctness. 

 
17.8 Brain Storm 

 
1. Write a short note on Data Dictionary ? 

2. Explain briefly about DSSD and JSD ? 

3. What is SADT ? 
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18.1 Snap Shot 
 
Design is the first step in the development phase for any engineering product or system.  The designer’s 
goal is to produce a model or representation of an entity that will later be built.  This lecture give you an 
idea about Software Design and Software Engineering, Design principles, process and concepts and also 
about Software Architecture. 
 

18.2 Software Design and Software Engineering 
 
Software design sits at the technical kernel of the software engineering process and is applied regardless 
of the software process model that is used. Beginning once software requirements have been analyzed and 
specified, software design is the first of three technical activities - design, code generation, and testing - 
that are required to build and verify the software. Each activity transforms information in a manner that 
ultimately results in validated computer software. 
 
Each of the elements of the analysis model provides information that is required to create a design model. 
The flow of information during software design is illustrated in following     figure 18.1. Software 
requirements, manifested by the data, functional, and behavioral models, feed the design step. Using one 
of a number of design methods (discussed in later chapters), the design step produces a data design, an 
architectural design, an interface design, and a procedural design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18.1 Translating the analysis model into a software desing 
 
The data design transforms the information domain created during analysis into the data structures that 
will be required to implement the software. The data objects and relationships defined in the entity-
relationship diagram and the detailed data content depicted in the data dictionary provide the basis for 
the data design activity. 
 
The architectural design defines the relationship among major structural elements of the program. This 
design representation - the modular framework of a computer program - can be derived from the analysis 
model(s) and the interaction of subsystems defined within the analysis model. 
 

The analysis model 
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The interface design describes how the software communicates within itself, to systems that interoperate 
with it, and with humans who use it. An interface implies a flow of information (e.g., data and/or control). 
Therefore, the data and control flow diagrams provide the information required for interface design. 
 
The procedural design transforms structural elements of the program architecture into a procedural 
description of software components. Information obtained from the PSPEC, CSPEC, CSPEC, and STD 
serve as the basis for procedural design. 
 
During design we make decisions that will ultimately affect the success of software construction, and as 
important, the ease with which software can be maintained. But why is design so important? 
 
The importance of software design can be stated with a single word-quality. Design is the place where 
quality is fostered in software development. Design provides us with representations of software that can 
be assessed for quality. Design is the only way that we can accurately translate a customer's requirements 
into a finished software product or system. Software design serves as the foundation for all software 
engineering and software maintenance steps that follow. Without design, we risk building an unstable 
system-one that will fial when small changes are made; one that may be difficult to test; one whose quality 
cannot be assessed until late in the software engineering process, when time is short and many dollars 
have already been spent. 
 

18.3 The Design Process 
 
Software design is an interative process through which requirements are translated into a "blueprint" for 
constructing the software. Initially, the blueprint depicts a holistic view of software. That is, the design is 
represented at a high level of abstraction - a level that can be directly trced to specific data, functional, and 
behavioral requirements. As design iterations occur, subsequent refinement leads to design 
representations at much lower levels of abstraction. These can still be traced to requirements, but the 
connection is more subtle. 
 
Design and Software Quality 
 
Throughout the design process, the quality of the evolving design is assessed with a series of formal 
technical reviews or degign walkthroughs discussed in following chapters. McGlaughlin suggests three 
characteristics that serve as a guide for the evaluation of a good design: 
 
• The design must implement all of the explicit requirements contained in the analysis model, and it 

must accommodate all of the implicit requirements desired by the customer. 

• The design must be a readable, understandable guide for those who generate code and for those who 
test and subsequently maintain the software. 

• The design should provide a complete picture of the software, addressing the data, functional, and 
behavioral domains from an implementation perspective. 

 
Each of these characteristics is actually a goal of the design process. But how is each of these goals 
achieved? 
 
In order to evaluate the quality of a design representation, we must establish technial criteria for good 
design. Later in this lecture we discuss design quality criteria in some detail. For the time being, we 
present the following guidelines: 
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1. A design should exhibit a hierarchical organization that makes intelligent use of control  among 
elements of software. 

2. A design should be modular; that is, the software should be logically partioned into  elements that 
perform specific functions and subfunctions. 

3. A design should contain both data and procedural abstractions. 

4. A design should lead to modules (e.g., subroutines or procedures) that exhibit  independent 
functional characteristics. 

5. A design should lead to interfaces that reduce the complexity of connections between  modules and 
with the external environment. 

6. A design should be derived using a repeatable method that is driven by information obtained during 
software requirements analysis. 

 
These criteria are not acheived by chance. The software design process encourages good design through 
the appliction of fundamental design principles, systematic methodology, and thorough review. 
 
The Evolution of Software Design 
 
The evolution of software design is a continuing process that has spanned the past three decades. Early 
design work concentrated on criteria for the development of modular programs and methods for refining 
software architecture in a top-down manner. Procedural aspects of design definition evolved into a 
philosophy called structured programming. Later work proposed methods for the translation of data flow 
or data structure into a design definition. Newer design appraches propose an object-oriented approach to 
design derivation. 
 
Many design methods, growing out of the work noted above, are being applied throughout the industry. 
Like the analysis methods each software design method introduces unique heuristics and notation, as well 
as a somewhat parochial view of what characterizes lead to design quality. Yet, each of these methods has 
a number of common characteristics: (1) a mechanism for the translation of an analysis model into a 
design representation, (2) a notation fo representing functional components and their interfaces, (3) 
heuristics for refinement and partitioning, and (4) guidelines for quality assessment. 
 
Regardless of the design method that is used, a software engineer should apply a set of fundamental 
principles and basic concepts to data, architectural, interface, and procedural design. These principles and 
concepts are considered in the sections that follow. 
 

18.4  Design Principles 
 
Software design is both a process and a model. The design process is a set of iterative steps that enable the 
designer to describe all aspects of the software to be built. It is important to note, however, that the design 
process is not simply a cookbook. Creative skill, past experience, a sense of what makes "good" software, 
and an overall commitment to quality are critical success factors for a competent design. 
 
The design model is the equivalent of an architect's plans for a house. It begins by representing the totality 
of the thing to be built (e.g., a three dimensional rendering of the house) and slowly refines the ghing to 
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provide guidance for constructing each detail (e.g., the plumbing layout). Similarly, the design model that 
is created for software provides a variety of different views of the computer program. 
 
Basic design principles enable the software engineer to navigate the design process. Davis suggests a set of 
principles for software design, which have been adapted and extended in the following list: 
 
• The design process should not suffer from "tunnel vision." A good designer should consider 

alternative approaches, judging each based on the requirements of the problem, the resources 
available to do the job, and the design concepts. 

• The design should be traceable to the analysis model. Because a single element of the design model 
often traces to multiple requirements, it is necessary to have a means for tracking how requirements 
have been satisfied by the design model. 

• The design should not reinvent the wheel. Systems are constructed using a set of design patterns, 
many of which have likely been encountered before. These patterns, often called reusable design 
components, should always  be chosen as an alternative to reinvention. Time is short and resources 
are limited! Design time should be invested in representing truly new ideas and integrating those 
patterns that already exist. 

• The design  should "minimize the intellectual distance" between the software and the problem as it 
exists in the real world. That is, the structure of the software design should (whenever possible) 
mimic the structure of the problem domain. 

• The design shold exhibit uniformity and integration. A design is uniform if it appears that one person 
developed the entire thing. Rules of style and format should be defined for a design team before 
design work begins. A design is integrated if care is taken in defining interfaces between design 
components. 

• The design should be structured to accommodate change. Many of the design concepts discussed in 
the next section enable a design to achieve this principles. 

• The design should be structured to degrade gently, even when aberrant data, events, or operating 
conditions are encountered. A well-designed computer program should never "bomb". It should be 
designed to accommodate unusual circumstances, and it if must terminate processing, do so in a 
graceful manner. 

• Design is not coding, coding is not design. Even when detailed procedural designs are created for 
program components, the level of abstraction of the design model is higher than source code.  The 
only design decisions made at the coding level address the small implementation details that enable 
the procedural design to be coded. 

• The design should be assessed for quality as it is being created, nto after the fact. A variety of design 
concepts and design measures are available to assist the designer in assessing quality. 

• The design should  be reviewed to minimize conceptual errors. There is sometimes a tendency to 
focus on minutiae when the design is reviewed, missing the forest for the trees. A designer should 
ensure that major conceptual elements of the design (ommissions, ambiguity, inconsistency) have 
been addressed before worrying about the syntax of the design model. 

 
When the design principles described above are properly applied, the software engineer creates a design 
that exhibits both external and internal quality factors. External quality factors are those properties of the 
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software that can be readily observed by users (e.g., speed, reliability, correctness, usability). Internal 
quality factors are of importance to software engineers. They lead to a high-quality design from the 
technical perspective. To achieve internal quality factors, the designer must understand basic design 
concepts. 
 

18.5 Design Concepts 
 
A set of fundamental software design concepts has evolved over the past three decades. Although the 
degree of interest in each concept has varied over the years, each has stood the test of time. Each provides 
the software designer with a foundation from which more sphisticated design methods can be applied. 
Each helps the software engineer to answer the following questions: 
 
• What criteria can be used to partition software into individual components? 

• How is function or data structure detail separated from a conceptual representation of the software? 

• Are there uniform criteria that define the technical quality of a software design? 

 
M. A. Jackson once said: "The beginning of wisdom for a [software engineer] is to recognize the difference 
between getting a program to work, and getting it right". Fundamenetal software design concepts provide 
the necessary framework for "getting it right". 
 
Abstraction 
 
When we consider a modular solution to any problem, many levels of abstraction can be posed. At the 
highest level of abstraction, a solution is stated in broad terms using the lannguage of the problem 
environment. At lower levels of abstraction, a more precedural orienetation is taken. Problem-oriented 
terminology is couples with implementation-oriented terminology in an effort to state a solution. Finally, 
at the lowest level of abstraction, the solution is stated in a manner that can be directly implemented. 
Wasserman provides a useful definition: 
 
[T]he psychological notion of "abstraction" permits one to concentrate on a problem at some level of 
generalization without regard to irrelevant low level details; use of abstraction also permits one to work 
with concepts and terms that  are familar that can be directly implemented. Wasserman provides 
environment without having to transform them to an unfamilar structure.... 
 
Each step in the software engineering process is a refinement in the level of abstraction of the software 
solution. During system engineering, software is allocated as an element of a computer-based system. 
During software requirements analysis, the software solution is stated in terms "that are familiar in the 
problem environment." As we move through the design process, the level of abstraction is reduced. 
Finally, the lowest level of abstraction is reached when source code is generated. 
 
As we move through different levels of abstraction, we work to create procedural and data abstrctions. A 
procedural abstraction is a named sequence of instructions that has a specific and limited function. An 
example of a procedural abstraction would be the word "open" on a door. "Open" implies a long sequence 
of procedural steps (e.g., walk to the door; reach out and grasp knob; turn knob and pull door; step away 
from moving door, etc.). A data abstraction is a named collection of data that describes a data object. 
 
In the context of the procedural abstraction open noted above, we can define a data abstraction called 
door. Like any data object, the data abstraction for door would encompass a set of attributes that describe 
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the door (e.g., door type, swing direction, opening mechanism, weight, dimensions).  It follows that the 
procedural abstraction open would make use of information contained in the attributes of the data 
abstraction door. 
 
A number of programming languages (e.g., Ada, Modula, CLU) provide mechanisms for creating abstract 
data types.  For example, the Ada package is a programming language mechanism that provides support 
for both data and procedural abstration.  The original abstract data type is used as a template or generic 
data structure from which other data structures can be instantiated. 
 
Contral abstraction is the third form of abstraction used in software design.  Like procedural and data 
abstraction, control abstraction implies a program control mechanism without specifying internal details.  
An example of a control abstraction is the synchronization semaphore (KA183) used to coordinate 
activities in an operating system. 
 
Refinement 
 
Stepwise refinement is a top-down design strategy originally proposed by Niklaus Wirth. The archtecture 
of a program is developed by successively refining levels of procedural detail. A hierarchy is developed 
by decomposing a macroscopic statement of function (a procedural abstraction) in a step wise fashion 
until programming language statements are reached. An overview of the concept is provided by Wirth: 
 
In each step (of the refinement), one or several instructions of the given program are decomposed into 
more detailed instructions. This successive decomposition or refinement of specifications terminates when 
all instructions are expressed in terms of any underlying computer or programming language... As tasks 
are refined, so the data may have to be refined, decomposed, or structured, and it is natural to refine the 
program and the data specifications in parallel. 
 
Every refinement step implies some design decisions. It is important that... the programmer be aware of 
the underlying criteria (for design decisions) and of the existence of alternative solutions. 
 
The process of program refinement proposed by Wirth  is analogous to the process of refinement and 
partitioning that is used during requirements analysis. The difference is in the level of implementation 
detail that is considered, not the approach. 
 
Refinement is actually a process of elaboration. We begin with a statement of function (or description of 
information) that is defined at a high level of abstraction. That is, the statement function or information 
conceptually, but provides no information about the internal workings of the function or the internal 
structure of the information. Refinement causes the designer to elaborate on the original statement, 
providing more and more detail as each successive refinement (elaboration) occurs. 
 
Abstraction and refinement are complementary concepts. Abstraction enables a designer to specify 
procedure and data and yet suppress low-level details. Refinement helps the designer to reveal low-level 
details as design progresses. Both concepts aid the designer in creating a complete design model as the 
design evolves. 
 
Modularity 
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The concept of modularity in computer software has been espoused for almost four decades. Software 
architecture embodies modularity; that is, software is divided into separately named and addressable 
components, called modules, that are integrated to satisfy problem requirements. 
 
It has been stated that "modularity is the single attribute of software that allows a program to be 
intellectually manageable". Monolithic software (i.e., a large program comprised of a single module) 
cannot be easily grasped by a reader. The number of contrl paths, span of reference, number of variables, 
and overall complexity would make understanding close to impossible. To illustrate this point, consider 
the following argument based on observations of human problem solving. 
 
Let C(x) be a function that defines the perceived complexity of a problem x, and E(x) be a function that 
defines the effort (in time) required to solve a problem x. For two problems, p1 and p2, if 
 
   C(p1) > C(p2)   (13.1a) 
it follows that 
   E(p1) > E(p2)   (13.1b) 
 
As a general case, this result is intuitively obvious. It does take more time to solve a difficult problem. 
 
Another interesting characteristic has been uncovered through experimentation in human problem 
solving. That is, 
 
   C(p1+p2) > C(p1) + C(p2)  (13.2) 
 
Equation (13.2) implies that the perceived complexity of a problem that combines p1 and p2 is greater than 
the perceived complexity when each  problem is considered separately. Considering equation (13.2) and 
the condition implied by equations (13.1), it follows that 
 
   E(p1+p2) > E(p1)+E(p2)  (13.3) 
 
This leads to a "divide and conquer" conclusion - it's easier to solve a complex problem when you break it 
into manageable pieces. The result expressed in inequality (13.3) has important implications with regard 
to modularity and software. It is, in fact, an argument for modularity. 
 
It is possible to conclude from inequality (13.3) that if we subdivide software indefinitely, the effort 
required to develop it will become negligibly small! Unfortunately, other forces come into play, causing 
this conclusion to be (sadly) invalid. As figure 18.2  shows, the effort (cost) to develop an individual 
software module does decrease as the total number of modules increases. Given the same set of 
requirements, more modules means smaller individual size. However, as the number of modules grows, 
the effort (cost) associated with integrating the modules also grows. These characteristics lead to a total 
cost or effort curve shown in the figure 18.2. There is a number, M, of modules that would result in 
minimum development cost, but we do not have the necessary sophistication to predict M with assurance. 
 
The curves shown in Figure18.2  do provide useful guidance when modularity is considered. We should 
modularize, but care should be taken to stay in the vicinity of M. Undermodularity or overmodularity 
should be avoided. But how do we know "the vicinity of M"? How modular should we make software? 
The answers to these questions require an understanding of other design concepts considered later in this 
lecture. 
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Another  important question arises when modularity is considered. How do we define an appropriate 
module of a given size? The answer lies in the method(s) used to define modules within a system. Meyer 
defines five criteria that enable us to evaluate a design method with respect to its ability to define an 
effective modular system: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18.2  Modularity and  software cost 
 
Modular decomposability. If a design method provides a systematic mechanism for decomposing the 
problem into subproblems, it will reduce the complexity of the overall problem, thereby achieving an 
effective modular solution. 
 
Modular composability. If a design method enables existing (reusable)  design components to be 
assembled into a new system, it will yield a modular solution that does not reinvent the wheel. 
 
Modular understandability. If a module can be understood as a stand alone unit (without reference to 
other modules) it will be easier to buildand easier to change. 
 
Modular continuity. If small changes to the system requirements result in changes to individual modules, 
rather than system-wide changes, the impact of change-induced side effects will be minimized. 
 
Modular protection. If an aberrant condition occurs within a module and its effects are constrained within 
that module, the impact of error-induced side effects will be minimized. 
 
Finally, it is important to note that a system may be designed modularly, even if its implementation must 
be "monolithic". There are situations (e.g., real time software, embedded software) in which relatively 
minimal speed and memory overhead introduced by subprograms (i.e., subroutines, procedures) is 
unacceptable. In such situations software can and should be designed with modularity as an overriding 
philosophy. Code may be developed "in-line." Although the program source code may not look modular 
at first glance the philosphy has been maintained, and the program will provide the benefits a modular 
system. 
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Software Architecture 
 
Software architecture alludes to "the overall structure of the software and the ways in which that structure 
provides conceptual integrity for a system". In its simplest form, architecture is the hierarchical structure 
of program components (modules), the manner in which these components interact, and the structure of 
the data that are used by the components. In a broader sense, however, "components" can be generalized 
to represent major system elements and their interactions. 
 
One goal of software design is to derive an architectural rendering of a system. This rendering serves as a 
framework from which more detailed design activities are conducted. A set of architectural patterns 
enables a software engineer to reuse design-level concepts. 
 
Shaw and Garlan describe a set of properties that should be specified as part of an architectural design: 
 
Structural properties. This aspect of the architectural design representation defines the components of a 
system (e.g., modules, objects, filters) and the  manner in which those components are packaged and 
interact with one another. For example, objects are packaged to encapsulate both data and the processing 
that manipulates the data, and to interact via the invocation of methods. 
 
Extra-functional properties. The architectural design description should  address how the design 
architecture achieves requirements for performance, capacity, reliability, security, adaptability, and other 
system characteristics. 
 
Families of related systems. The architectural design should draw upon repeatable patterns that are 
commonly encountered in the design of families of similar systems. In essence, the design should have the 
ability to reuse architectural building blocks. 
 
Given the specification of these properties, the architectural design can be represented using one or more 
of a number of different models. Structural models represent architecture as an organized collection of 
program components. Framework models increase the level of design abstraction by attempting to 
identify repeatable architectural design frameworks (patterns) that are encountered in similar types of 
applications. Dynamic models address the behavioral aspects of the program architecture, indicating how 
the structure or system configuration may change as a function of external events. Process models focus 
on the design of the business or technical process that the system must accommodate. Finally, functional 
models can be used to represent the functional hierarchy of a system. 
 
A number of differentd archtectural description languages (ADLs) have been developed to represent the 
models noted above. Although many different ADLs have been proposed, the majority provide 
mechanisms for describing system components and the manner in which they are connected to one 
another. 
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Figure 18.3 Structure Terminology 
 
Control Hierarchy 
 
Control hierarchy, also called program structure, represents the organization of program components and 
implies a hierarchy of control. It does not represent procedural aspects of software such as sequence of 
processes, occurrence/order of decisions, or repetition of operations.  
 
Many different notations are used to represent control hierarchy. The most common is the tree-like 
diagram that represents the hierarchy. However, other notations, such as Warnier-Orr and Jackson 
diagrams may also be used with equal effectiveness. In order to facilitate later discussions of strucutre, we 
define a few simple measures and terms. In Figure 18.3, depth and width provide an indication of the 
number of levels of control and overall span of control, respectively. Fan-out is a measure of the number 
of modules that are directly controlled by another module. Fan-in indicates how many modules directly 
control a given module. 
 
The control relationship among modules is expressed in the following way: A module that controls 
another module is said to be superordinate to it; conversely, a module controlled by another is said to be 
subordinate to the controller. For example, as shown in Figure 13.3, module M is superordinate to 
modules a, b and c. Module h is subordinate to module e and is ultimately subordinate to module M. 
Width-oriented relationships (e.g., between modules d and e), although possible to express in practice, 
need not be defined with explicit terminology. 
 
The control hierarchy also represents two subtly different characteristics of the software architecture: 
visibility and connectivity. Visibility indicates the set of programs components that may be invoked or 
used as data by a given component, even when this is accomplished indirectly. For example, a module in 
an object-oriented, but only make use of a small number of these data attributes. All of the attributes are 
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visible to the module. Connectivity indicates the set of components that are directly invoked or used as 
data by a given component. For example, a module that directly  causes another module to begin 
execution in connected to it. 
 
Structural Partitioning 
 
The program structure should be partitioned both horizontally and vertically. As shown in Figure 18.4 a, 
horizontal partitioning defines separate branches of the modular hierarchy fo reach major program 
function. Control modules, represented in a darker shade, are used to coordinate communication between 
and execution of program functions. The simplest approach to horizontal partitioning defines three 
partitions - input, data transformation (often called processing), and output. Partitioning the architecture 
horizontally provides a number of distinct benefits: 
 
• results in software that is easier to test 

• leads to software that is easier to maintain 

• results in propagation of fewer side effects 

• results in software that is easier to extend 

 
Because major functions are decoupled from one another, change tends to be less complex and extensions  
 
 
 
 
 
 
 
 
 
 
 
(a) Horizontal partitioning  
 
 
 
 
 
 
 
 
 
 
 
(b) Vertical partitioning 
 
Figure 18.4 Architectural partioning 
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to the system (a common occurrence) tend to be easeir to accomplish without side effects. On the negative 
side, horizontal partitioning often causes more data to be passed across module interfaces and can 
complicate the overall control of program flow (if processing requires rapid movement from one function 
to another). 
 
Vertical partitioning, often called factoring, suggests that control and work should be distributed top-
down in the program architecture. Top-level modules should perform control functions and do little 
actual processing work. Modules that reside low in the architecture should be the workers, performing all 
input, computational, and output tasks. 
 
The nature of change in program architectures justifies the need for vertical partitioning. A change in a 
control module (high in the architecture) will have a higher probability of propagating side effects to 
modules that are subordinate to it. A change to a worker module, given its low level in the structure, is 
less likely to cause the propagation of side effects. In general, changes to computer programs revolve 
around changes to input, computation or transformation, and output. The overall control structure of the 
program (i.e., its basic behavior) is far less likely to change. For this reason vertically partitioned 
architectures are less likely to be susceptible to side effects when changes are made and will therefore be 
more maintainable – a key quality factor. 
 
Data Structure 
 
Data structure is a representation of the logical relationship among individual elements of data. Because 
the structure of information will invariable affect the final procedural design, data structure is as 
important as program structure the representation of software architecture. 
 
Data structure dictates the organization, methods of access, degree of associativity, and processing 
alternatives for information. Entire texts have been dedicated to these topics, and a complete discussion is 
beyond the scope of this book. However, it is important to understand the classic methods available for 
organizing information and the concepts that underlie information hierarchies. 
 
The organization and complexity of a data structure are limited only by the ingenuity of the designer. 
There are, however, a limited number of classic data structures that form the building blocks for more 
sophisticated structures. 
 
A scalar item is the simplest of all data structures. As its name implies, a scalar item represents a single 
element of information that may be addressed by an identifier; that is, access may be achieved by 
specifying a single address in storage. 
 
When scalar items are organized as a list or contiguous group, a sequential vector is formed. Vectors are 
the most common of all data structures and open the door to variable indexing of information. 
 
When the sequential vector is extended to two, three, and ultimately, an arbitrary number of dimensions, 
an n-dimensional space is created. The most common n-dimensional space is the two-dimensional matrix. 
In most programming languages, an n-dimensional space is called an array. 
 
Items, vectors, and spaces may be organized in a variety of formats. A linked list is a data structure that 
organizes noncontiguous scalar items, vectors, or spaces in a manner that enables them to be processed as 
a list. Each node contains the appropriate data organization and one or more pointers that indicate the 
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address in storage of the next node in the list. Nodes may be added at any point in the list by redefining 
pointers to accommodate the new list entry. 
 
Other data structures incorporate or are constructed using the fundamental data structures described 
above. For example, a hierarchical data structure is implemented using multilinked lists that contain scalar 
items, vectors, and possible n-dimensional spaces. A hierarchical structure is commonly encountered in 
applications that require information categorization and associativity. Categorization implies a grouping 
of information by some generic category (e.g., all subcompact automobiles or all 64-bit microprocessors). 
Associativity implies the ability to associate information from different categories; for example, find all 
entries in the microprocessor category that cost less that $100.00 (cost subcategory), run at 100 MHz (cycle 
time subcategory), and are made by U.S. vendors (vendor subcategory). 
 
It is important to note that data structures, like program structures, can be represented at different levels 
of abstraction. For example, a stack is a conceptual model of a data structures that can be implemented as 
a vector or a linked list. Depending on the level of design detail, the internal workings of stack may or 
may not be specified. 
 
Software Procedure 
 
Program structure defines control hierarchy without regard to the sequence of processing and decisions. 
Software procedure focuses on the processing details of each module individually. Procedure must 
provide a precise specification of processing, including sequence of events, exact decision points, 
repetitive operations, and even data organization / structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18.5 Procedure is layered 
 

Procedure for superordinate module 

Procedure for superordinate module 

Procedure for superordinate module 
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There is, of course, a relationship between structure and procedure. Processing indicated for each module 
must include a reference to all modules subordinate to the module being described. That is, a procedural 
representation of software is layered.  
 
Information Hiding 
 
the concept of modularity leads every software designer to a fundamental question: “How do we 
decompose a software solution to obtain the best set of modules?” The principle of information hiding 
suggests that modules be “characterized by design decisions that (each) hides from all others.” In other 
words, modules should be specified and designed so that information (procedure and data) contained 
within a module is inaccessible to other modules that have no need for such information. 
 
Hiding implies that effective modularity can be achieved by defining a set of independent modules that 
communicate with one another only that information that is necessary to achieve software function. 
Abstraction helps to define the procedural (or informational) entities that comprise the software. Hiding 
defines and enforces access constraints to both procedural detail within a module and any local data 
structure used by the module. 
 
The use of information hiding as a design criterion for modular systems systems provides its greatest 
benefits when modifications are required during testing and later, during software maintenance. Because 
most data and procedure are hidden from other parts of the software, inadvertent errors introduced 
during modification are less likely to propagate to other locations within the software. 
 

18.6 Short Summary 
 

 Modularity (in both program and data) and the concept of abstraction enable the designer to simplify 
and reuse software components.  

 Refinement provides a mechanism for representing successive layers of functional detail.  

 Program and data structure contribute to an overall view of software architecture, while procedure 
provides the detail necessary for algorithm implementation.  

 Information hiding and functional independence provide heuristics for achieving effective 
modularity. 

 We conclude our discussion of design fundamentals with the words of Glenford Myers: 

[W]e try to solve the problem by rushing through the design process so that enough time will be left 
at the end of the project to uncover errors that were made because we rushed through the design 
process. The moral is don’t rush through it! Design is worth the effort. 

18.7 Brain Storm 
 
1. Write a short note on Software Design and Software Engineering ? 

2. Explain briefly about Design Process ? 

3. Explain briefly about Design principles and Design Concepts ? 

4. What is Software Architecture ? Explain. 
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19.1 Snap Shot  
 
The fundamental design concets described in the preceding section all serve to precipitate modular 
designs.  In fact, modularity has become an accepted approach in all engineering disciplines.  A modular 
design reduces complexity  facilitates change and results in easier implementation by encouraging parallel 
developmentof different parts of a system. 
 
Functional Independence 
 
The concept of functional independence is a direct outgrowth of modularity and the concepts of 
abstraction and information hiding. In landmark papers on software design Parnas and Wirth allude to 
refinement techniques that enhance module independence. Later work by Stevens, Myers, and 
Constantine solidified the concept. 
 
Functional independence is achieved by developing modules with “single-minded” function and an 
“aversion” to excessive interaction with other modules. Stated another way, we want to design software 
so that each module addresses a specific subfunction of requirements and has a simple interface when 
viewed from other parts of the program structure. It is fair to ask why independence is important. 
Software with effective modularity (i.e., independent modules), is easier to develop because function may 
be compartmentalized and interfaces are simplified (consider ramifications when development is 
conducted by a team). Independent modules are easier to maintain (and test) because secondary effects 
caused by design/code modification are limited, error propagation is reduced, and reusable modules are 
possible. To summarize, functional independence is a key to good design, and design is the key to 
software quality. 
 
Independence is measured using two qualitative criteria: cohesion and coupling. Cohesion is a measure of 
the relative functional strength of a module. Coupling is a measure of the relative interdependence among 
modules.  
 
Cohesion is a natural extension of the information hiding concept.  A cohesive module performs a single 
task within a software procedure, requiring little interaction with procedures being performed on other 
parts of a program. Stated simply, an cohesive module should (ideally) do just one thing. 
 
Cohesion may be represented as a “spectrum”.  We always strive for high cohesion, although the mid-
range of the spectrum is often acceptable. The scale for cohesion is nonlinear. That is, low-end 
cohesiveness is much “worse” than the middle range, which is nearly as “good” as high-end cohesion. In 
practice, a designer need not be concerned with categorizing cohesion in a specific module. Rather, the 
overall concept should be understood and low levels of cohesion should be avoided when modules are 
designed. 
 
To illustrate (somewhat facetiously) the low end of the spectrum, we relate the following story: 
 
In the late 1960s most DP managers began to recognize the worth of modularity. Unfortunately many 
existing programs were monolithic – e.g.,20,000 lines of undocumented Fortran with one 2500 line 
subroutine! To bring a large computer program to the state of the art, a manager asked her staff to 
modularize the program. This was to be done “in your spare time”. 
 
Under the gun, one staff member asked (innocently) the proper length for a module. “Seventy-five lines of 
code,” came the reply. He then obtained a red pen and a ruler, measured the linear distance taken by 75 
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lines of source code, and drew a red line on the source listing, then another and another. Each red 
line indicated a module boundary. This technique is akin to developing software with coincidental 
cohesion! 
 
A module that performs a set of tasks that relate to each other loosely, if at all, is termed coincidentally 
cohesive. A module that performs tasks that are related logically (e.g., a module that produces all output 
regardless of type) is logically cohesive. When a module contains tasks that are related by the fact that all 
must be executed within the same span of time, the module exhibits temporal cohesion. 
 
 
 
 
 
 
 
“Scatter-brained “         “Single-minded“  
  
Figure 19.1 Cohesion 
 
As an example of low cohesion, consider a module that performs error processing for an engineering 
analysis package. The module is called when computed data exceed prespecified bound. It performs the 
following tasks: (1) computes supplementary data based on original computed data based on original 
computed data; (2) produces an error report (with graphical ontent) on the user’s workstation; (3) 
performs follow-up calculations requested by the user; (4) updates a data base; and (5) enables menu 
selection for subsequent processing. Although the preceding tasks are loosely related, each is an 
independent functional entity that might best be performed as a separate module. Combining the 
functions into a single module can only serve to increase the likelihood of error propagation when a 
modification is made to any one of the processing tasks noted above. 
 
Moderate levels of cohesion are relatively close to one another in the degree of module independence. 
When processing elements of a module are related and must be executed in a specific order, procedural 
cohesion exists. When all processing elements concentrate on one area of a data structure, 
communicational cohesion is present. High cohesion is characterized by a module that performs one 
distinct procedural task. 
 
As we have already noted, it is unnecessary to determine the precise level of cohesion. Rather it is 
important to strive for high cohesion and recognizes low cohesion so that software design can be modified 
to achieve greater functional independence. 
 
Coupling 
 
Coupling is a measure of interconnection among modules in a program structure. Like cohesion, coupling 
may be represented on a spectrum as shown in figure 19.2.  Coupling  depends on the interface 
complexity between modules, the point at which entry or reference is made to a module, and what data 
pass across the interface. 
 
In software design, we strive for lowest possible coupling. Simple connectivity among modules results in 
software that is easier to understand and less prone to a “ripple effect” caused when errors occur at one 
location and propagate through a system. 

Low | | | | | | | | | |     Cohesion spectrum  | | | | | | | | | |        High
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Figure 19.3 provides examples of different types of module coupling. Modules a and d are subordinate to 
different modules. Each is unrelated and therefore no direct coupling occurs. Module c is subordinate to 
module a and is accessed via a conventional argument list through which data are passed. As long as a 
simple argument list is present (i.e., simple data are passed; a one-to-one correspondence of items exists), 
low coupling (data coupling on the spectrum) is exhibited in this portion of structure. A variation of data 
coupling, called stamp coupling, is found when a portion of a data structure (rather than simple 
arguments) is passed via a module interface. This occurs between modules b and a. 
 
 
 
 
 
 
 
 
Figure 19.2 Coupling 
 
At moderate levels coupling is characterized by passage of control between modules. Control coupling is 
very common is most software designs and is shown in figure 19.3, where a “control flag” is passed 
between modules d and e. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 19.3 Types of coupling 
 

Low | | | | | | | | | |     Cohesion spectrum  | | | | | | | | | |        High

No direct 
coupling 

Data  
coupling 

Stamp 
coupling 

Control 
coupling

External Common 
coupling 

Content 
coupling

A measure of the interdependence among software modules 

 

a 

 

b 
 
 

c 

 
 

i 

 
 

j 
 
 

k 
 
 

e 

 
 

f 
 
 

g 
 
 

h 

 

d 

 

No direct  
coupling 

Control 
flag Data 

structure 

Data 
(variables) 

Global data
area 



Design Concepts and Principles - II 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 235 

Types of Coupling 
 
Relatively high levels of coupling occur when modules are tied to an environment external to software. 
For example, I/O couples a module to specific devices, formats, and communication protocols. External 
coupling is essential, but also occurs when a number of modules reference a global data area. Common 
coupling, as this mode is called, is shown in figure 19.3.  Modules c, g, and h each access a data item in a 
global data area (e.g., a disk file, Fortran COMMON, external data types in the C programming language). 
Module c initializes the item. Later module g recomputes and updates the item. Let’s assume that an error 
occurs and g updates the item incorrectly. Much later in processing, module k reads the item, attempts to 
process it, and fails, causing the software to abort. The apparent cause of abort is module k; the actual 
cause, module g. Diagnosing problems in structures with considerable common coupling is time-
consuming and difficult. However, this does not mean that the use of global data is necessarily “bad”. It 
does mean that a software designer must be aware of potential consequences of common coupling and 
take special care to guard against them. 
The highest degree of coupling, content coupling, occurs when one module makes use of data or control 
information maintained within the boundary of another module.  Secondarily, content coupling occurs 
when branches are made into the middle of a module.  This mode of coupling can and should be avoided. 
 
The coupling modes discussed above occur because of design decision made when the program structure 
was developed.  Variants of external coupling, however, may be introduced during coding.  For example, 
compiler coupling  ties source code to specific ( and often nonstandard) attributes of a compiler; operating 
system (OS) coupling ties design and resultant code to operation system “hooks” that can create havoc 
when OS changes occur. 
 

19.2 Design Heuristics for Effective Modularity 
 
Once a program structure has been developed, effective modularity can be achieved by applying the 
design concepts introduced earlier in this chapter.  The program architecture is manipulated according to 
a set of heuristics (guidelines) presented in this section. 
 
I. Evaluate the “first iteration” of the program structure to reduce coupling and improve cohesion.  
Once program structure has been developed, modules may be exploded or imploded with an eye toward 
improving module independence.  An exploded module becomes two or more modules in the final 
program structure.  An imploded module is the result of combining the processing implied by two or 
more modules. 
An exploded module often results when a common process component exists in two or more modules and 
can be redefined as a separate cohesive module.  When high coupling is expected, modules can sometimes 
be imploded to reduce passage of control, reference to global data and interface complexity. 
 
II. Attempt to minimize structures with high fan-out; strive for fan-in as depth increases.   The structure 
shown inside the cloud in Figure 19.4 does not make effective use of factoring.  All modules are “ 
pancaked” below a single control module.  In general, a more reasonable distribution of control is shown 
in the upper structure.  The Structure takes an oval shape, indicating a number of layers of control and 
highly utilitarian modules at lower levels. 
 
III. Keep scope of effect of a module within the scope of control of that module. 
 
The scope of effect of a module is defined as all other modules that are affected by a decision made in 
module e.  The scope of control of module e is all modules that are subordinate and ultimately 
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subordinate to module e.  As shown in Figure 19.4, if module e makes a decision that affects module r, we 
have a violation of heuristic III, because module r lies outside the scope of control of module e. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19.4 Program structure 
 
IV. Evaluate module interfaces to reduce complexity and redundancy and improve consistency.  
Module interface complexity is a prime cause of software errors.  Interfaces should be designed to pass 
information simply and should be consistent with the function of a  module.  Interface inconsistency ( i.e 
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seemingly unrelated data passed via an argument list or other technique) is an indication of low cohesion.  
The module in question should be re-evaluated. 
 
V. Define modules whose function is predictable, but avoid modules that are overly restrictive.    A 
module is predictable when it can be treated as a black box;  that is, the same external data will be 
produced regardless of internal processing details.  Modules that have internal memory can be 
unpredictable unless care is taken in their use. 
 
A module that restricts processing to a single subfunction exhibits high cohesion and is viewed with favor 
by a designer.  However, a module that arbitrarily restricts  size of a local data structure, option within 
control flow, or modes of external interface will invariably require maintenance to remove such 
restrictions. 
 
VI. Strive for “controlled entry”  modules, avoiding “pathological connections”.  This design heuristic 
warns against content coupling.  Software is easier to understand and therefore easier to maintain when 
modules interfaced are constrained and controlled.  Pathological connection refers to branches or 
references into the middle of a module. 
 
VII. Package software based on design constraints and portability requirements.    Packaging alludes to 
the techniques used to assemble software for a specific processing environment.  Design constrains 
sometimes dictate that a program “ overlay”  itself in memory.  When this must occur, the design 
structure may have to be reorganized to group modules by degree of repetition, frequency of access and 
interval between calls.  In addition, optional or “one-shot”  modules may be separated in the structure so 
that they may be effectively overlaid. 

 
19.3 The Design Model   

 
The design principles and concepts discussed in this chapter establish a foundation for the creation of the 
design model that encompasses representation of data, architecture,  interfaces, and procedures.  Like the 
analysis model before it, in the design model each of these design representation is tied to the others, and 
all can be traces back to software requirements. 
 
In figure 19.1, the design model was represented as pyramid.  The symbolism of this shape is important.  
A pyramid is an extremely stable object with a wide base and a low center of gravity.  Like the pyramid, 
we want to create a software design that is stable.  By establishing a broad foundation using data design, a 
stable mid-region with architectural and interface design, and a sharp point by applying procedural 
design, we create a design model hat is not easily “tipped over” by the winds of change. 
 
It is interesting to note that some programmers continue to design implicitly, conducting procedural 
design as they code.   This is akin to taking the design pyramid and standing it on its point an extremely 
unstable design results.  The smallest change may cause the pyramid ( and the program) to topple. 
 
The methods that lead to the creation of the design model are presented in lectures.  Each methods enables 
the designer to create a stable design that conforms to the fundamental concepts that lead to high quality 
software. 
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19.4 Design Documentation 
 
The document outlined in figure 19.5 can be used as template for a design specification.  Each numbered 
paragraph addresses different aspects of the design model.  The numbered sections of the design 
specification are completed as the designer refines his or her representation of the software. 
 
The overall scope of the design effort is described in section I ( section numbers refer to design 
specification  outline)  Much of the information contained in this section is derived from the system 
specification and the analysis model ( software requirements specification). 
 
I.  Scope 

A. System objectives 
B. Major software requirements 
C. Design constraints, limitations 

 
II. Data Design 

A. Data objects and resultant data structures 
B. File and database structures 

1.  External file structure  
a. Logical structure 
b. Logical record description 
c. Access method 

2. Global data 
3. File and data cross reference  

 
III. Architectural Design 

A. Review of data and control flow 
B. Derived program structure 

 
IV. Interface Design 

A. Human-machine interface specification 
B. Human-machine interface design rules 
C. External interface design 

1. Interfaces to external data 
2. Interfaces to external systems or devices 

 D.    Internal interface design rules 
 
V.  Procedural Design 
 For each module: 

A. Processing narrative 
B. Interface description 
C. Design language (or other) description 
D. Modules used 
E. Internal data structures 
F. Comments / restrictions / limitations 

 
VI. Requirements Cross-Reference 
VII. Test Provisions 

1. Test guidelines 
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2. Integration strategy 
3. Special considerations 

 
VIII. Special Notes 
 
IX. Appendices 
 
Figure 19.5 Design specification outline 
 
Section II presents the data design, describing external file structures, internal data structures and a cross 
reference that connects data objects to specific files. Section III, the architectural design, indicates how the 
program architecture has been derived from the analysis model. Structure charts (a representation of 
program structure) are used to represent the module hierarchy. 
 
Sections IV and V evolve as interface and procedural design commence. External and internal program 
interfaces are represented and a detailed design of the human-machine interface is described. Modules – 
separately addressable elements of software such as subroutines, functions, or procedures – are initially 
described with an English-language processing narrative. The processing narrative explains the 
procedural function of a module. Later, a procedural design tool is used to translate the narrative into a 
structured description. 
 
Section VI of the design specification contains a requirements cross-reference. The purpose of this cross-
reference matrix is (1) to establish that all requirements are satisfied by the software design, and (2) to 
indicate which modules are critical to the implementation of specific requirements. 
 
The first stage in the development of test documentation is contained in section VII of the design 
document. Once software structure and interfaces have been established, we can develop guidelines for 
testing of individual modules and integration of the entire package. In some cases, a detailed specification 
of test procedure occurs in parallel with design. In such cases, this section may be deleted from the design 
specification. 
 
Design constraints, such as physical memory limitations or the necessity for a specialized external 
interface, may dictate special requirements for assembling or packaging of software. Special 
considerations caused by the necessity for program overlay, virtual memory management, high-speed 
processing, or other factors may cause modification in design derived from information flow or structure. 
Requirements and considerations for software packaging are presented in section VII. Secondarily, this 
section describes the approach that will be used to transfer software to a customer site. 
 
Section IX of the design specification contains supplementary data. Algorithm descriptions, alternative 
procedures, tabular data, excerpts  from other documents and other relevant information are presented as 
a special not or as a separate appendix. It may be advisable to develop a preliminary operations / 
installation manual and include it as appendix to the design document. 
 

19.5 Short Summary 
 

 Design is the technical kernel of software engineering. During design, progressive refinements of data 
structure, program architecture, interfaces, and procedural detail are developed, reviewed, and 
documented.  

 Design results in representations of software  that can be assessed for quality. 
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 A number of fundamental software design principles and concepts have been proposed over the past 
three decades.  

 Design  principles guide the software engineer as the design process proceeds.  

 Design concepts provide basic criteria for design quality. 
 

19. 6 Brain Storm 
 
1. Give a short note on Functional Independence ? 
2. What is coupling ? Explain. 
3. Expalin briefly about Design Model and Design Documentation ? 
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20.1 Snap Shot  
 
Data design is the first (and some would say the most important) of four design activities that are 
conducted during software engineering.  The impact of  data structure on program structure  and 
procedural complexity causes data design to have a profound influence on software quality.  The concepts 
of information hiding and data abstraction provide the foundation for an approach to data design. 
 
The process of data design summarized by  Wasserman [WAS80]: 
 
The primary activity during data design is to select logical representations of data objects (data structures) 
identified during the requirements definition and specification phase.  The selection process may involve 
algorithmic analysis of alternative structures in order to determine the most efficient design or may simply 
involve the use of a set of modules (a “package”) that provide the desired operations upon some 
representation of an object. 
 
An important related activity during design is to  identify those program modules that must operate 
directly  upon  the logical data structures.  In this way the scope of effect of individual data design 
decisions can be constrained. 
 
Regardless of the design techniques to be used, well designed data can lead to better program structure 
and modularity, and reduced procedural complexity. 
 
Wasserman has proposed a set of principles that may be used to specify  and design data.  In actuality, the 
design of data begins during the creation of the analysis model.  Recalling that requirements analysis and 
design often overlap, we consider the following set of principles [WAS80] for data specification: 
  
1.   Systematic analysis principles applied to function and behavior should also be applied to data.  We 

spend much time and effort deriving, reviewing, and specifying functional requirements and 
preliminary design.  Representations of data objects, relationships, dataflow, and content should also 
be developed and reviewed, alternative data organizations should be considered, and the impact of 
data modeling on software design should be evaluated.  For example specification of multiringed   
linked list may nicely satisfy data requirements but may lead to an unwiedly  software design.  An 
alternative data organization may lead to better results. 

 
2. All data structures and the operations to be performed on each should be identified.  The design of an 

efficient data structure must take the operations to be performed on the data structure  must take the 
operations to be performed on the data structure into account.  For example, consider a data structure 
made up of a set  of diverse data elements.  The data structure is to be manipulated in a number of 
major software functions.  Upon evaluation of the operation performed on the data structure, an 
abstract data type is defined for use in subsequent  software design.  Specification of the abstract data 
type may simplify software design considerable. 

 
3. A data  dictionary should be established and used to define both data and program design.  The 

concept of a data dictionary was introduced later chapters.  A data dictionary explicitly represents the 
relationships among data objects and the constraints on the elements of a data structure.  Algorithms  
that must take advantage of specific relationships can be more easily defined if a dictionary like data 
specification exists. 
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4. Low level data design decisions should be deferred until late in the design process.  A process of 
stepwise refinement may be used for the design  of data.  That is, overall data organization may be 
defined during requirements analysis, refined during preliminary design, and specified in  detail 
during later design iterations.  The top-down approach to data design provides benefits that are 
analogous to a top-down approach to software design major structural attributes are designed and 
evaluated first so that the architecture of the data may be established. 

 
5. The representation of data structures should be known only to those modules that must make direct 

use of the data contained within the structure.  The concept  of information hiding and the related 
concept of coupling provide important insight into the quality of a software design.  Principle  5 
alludes to the importance of these concepts as well as “the  importance of separating the logical view 
of a data object from its physical view”[WAS80]. 

 
6. A library of  use full data structures and the operations that may be applied to them should be 

developed.  Data  structures and operations should be viewed as resources for software design.  Data 
structures can be designed can reduce both specification and design effort for data. 

 
7. A software design and programming language should support  the specification and realization of 

abstract data types.  The implementation (and corresponding design) of s sophisticated data structure 
can be made exceedingly difficult if no means for direct specification of the structure exists.  For 
example, implementation (or design) of a linked list structure of a multi level heterogeneous array 
would be difficult   if  the target programming language was Fortran because the language does not 
support direct specification of the data structures. 

 
The principles described above form a basis for a data design approach that can be integrated into both the 
definition and development phases of the software engineering process.  As we have noted elsewhere in 
this book, a clear definition of information is essential to successful software development. 
 

20.2 Architectural Design 
 
The primary objective of architectural design is to develop a modular program structure and represent the 
control relationships between modules.  In addition, architectural design melds program structure and 
data structure, defining interfaces that enable data to flow throughout the program. 
 
To understand the importance of architecture  design, we present a brief story from everyday life: 
 
You have saved your money, you’ve purchased a beautiful piece of land, and you’ve decided to build the 
house of your dreams.  Having no experience in such matters, you visit a builder and explain your desires 
– number and size of rooms, contemporary styling, spa(of course!). cathedral ceilings, lots of glass, etc.  
The builder listens carefully, asks a few questions, and them tells you that he’ll have a design in a few 
weeks. 
 
As you wait anxiously for his call, you conjure up many different (and out rageously expensive) images of 
your new house.  What will he come up with?  Finally, the phone rings and you rush to his office. 
 
Pulling out a large manila folder, the builder spreads a diagram of the plumbing for the second floor 
bathroom in front of you and proceeds to explain it in great detail. 
 
“But what about the overall design?” you say. 
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“Don’t worry, “says the builder, “we’ll get to that later”. 
 
Does the builder’s final response?  Of course not! You want to see a sketch of the house, a floor plan, and 
other information that will provide an architectural view.  Yet many software  developers act like the 
builder in our story.  They concentrate on the “plumbing” (procedural details and code) to the exclusion of 
the software architecture.   The design method presented in this section encourages the software engineer 
to concentrate on architectural design before worrying  about the plumbing. 
 
Contributors 
 
Architectural design (and software design generally) has its origins in earlier design concepts that  
stressed modularity [DEN 73], top-down design [WIR 71], and structured programming [DAH72, LIN79].  
Stevens, Myers, and Constantine  [STE74] were early proponents of software design based on the flow of 
data through a system.  Early work was refined and presented in books by Myers [MYE78] and yourdon 
and Constantine[YOU79] 
 
 
Areas of Application 
 
Each software design method has strengths and weakness.  An important selection factor for a design 
method is the breadth of applications to which it can be applied.  Data flow oriented design is amenable to 
a broad range of application areas.  In fact, because all software can be represented by a data flow 
diagram, a design method that makes use of the diagram could theoretically be applied in every software 
development effort.  A data flow- oriented approach to  design is particularly useful when information is 
processed sequentially and no formal hierarchical data structure exists.  For example, microprocessor 
control application complex , numerical analysis procedures; process control; and many other engineering 
and scientific software applications fall into this category.  Data flow oriented design techniques are also 
applicable  in data processing applications and can be effectively applied even when hierarchical data 
structures do exist. 
 
There are cases, however, in which a consideration of data flow is at  best a side issue.  In such 
applications (e.g., database systems, expert systems, object oriented interfaces), other design methods may 
be more appropriate. 
 

20.3 The Architectural Design Process 
 
Data flow oriented design is an architectural design method that allows a convenient transition from the 
analysis model to a design description of program structure.  The transition from information flow 
(represented as a data flow diagram) to structure is accomplished as part of a five step process 
 
1. The type of information flow is established 

2. Flow boundaries are indicated 

3. The DFD is mapped into program structure 

4. Control hierarchy is defined by  factoring 

5. The resultant structure is refined using design measures and heuristics. 
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The information flow type is the driver for the mapping approach required in step 3.  in the following 
sections we examine two flow types. 
 
Transform Flow 
 
In the fundamental system model (level 0 data flow diagram),  information must enter and exit software 
in an “external  world”  form, for example, data typed on a keyboard, tones on a telephone line, and 
pictures on a computer graphics display are all forms of external world information.  such externalized 
data must be converted into an internal form for processing.  The time history of data can be illustreated in 
figure 20.1.   Information enters the system  along paths that transform external data into an internal form 
and will be identified as incoming flow.  At the kernel  of the software, a transition occurs.  Incoming data 
are passed through a transform enter and begin to move along paths that now lead “out” of the software.  
Data moving along these paths are called out going flow.  The  overall flow of data occurs in a sequential 
manner and follows one, or only a few, “straight line” paths.  When a segment of a data flow diagram 
exhibits these characteristics, transform flow is present. 
 
Transaction Flow 
 
The fundamental system model implies transform flow; therefore, it is possible to characterize all data 
flow in this category.  However, information flow is often characterized by a single data item, called a 
transaction, that triggers other data flow along one of many paths.  When a DFD takes the form shown in 
fig 14.2 , transaction flow is present. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 201. Flow of information 
 
Transaction flow is characterized by data moving along an incoming path that converts external world 
information into a transaction.  The transaction is evaluated, and based on its value, flow along one of 
many action paths is initiated.  The hub of information flow from which many action paths emanate is 
called a transaction center. 
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Figure 20.2 Transaction flow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20.3 Context-level DFD for SafeHome 
 
It should be noted that within a DFD for a large system, both transform and transaction flow may be 
present.  For example, in a transaction oriented flow, information flow along an action path may have 
transform flow characteristics. 
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20.4 Transform Mapping 
 
Transform mapping is set of design steps that allows a DFD with transform flow characteristics to be 
mapped into a predefined template for  program structure.  In this section transform mapping is described 
by applying design steps to an example system-a portion of  the SafeHome security software presented in 
earlier chapters. 
 
An example 
 
the SafeHome security system introduced earlier in this book, is representative of many computer based 
products and systems in use today.  The product monitors the real world and reacts to changes that it 
encounters.  It also interacts with a user through a series of typed  inputs and alphanumeric displays.  The 
level 0 data flow diagram for SafeHome, reproduced from  previous lectuer, is shown in 20.3. 
 
During requirements analysis, more detailed flow models would be created for SafeHome.  In addition, 
control and process specifications,  a data dictionary, and various behavioral models would also be 
created. 
 
Design Steps 
 
The above example will be used to illustrate each step in transform mapping the steps begin with a re-
evaluation of work done during requirements analysis and then move to  the development of program 
structure. 
 
Step 1. review the fundamental  system model.  The fundamental system model encompasses the level 0 
DFD and supporting information.  In actuality the design step begins with an evaluation of both the 
system specification and the software  requirements specification.  Both documents describe information 
flow and structure at the software interface.  Figure 20.3, 20.4 depict level 0 and level 1 data flow for the 
SafeHome software. 
 
Step 2.  Review and refine data flow diagrams for the software.  Information obtained from analysis 
models contained in the software requirements specification  is refined to produce grater detail.  For 
example, the level DFDs for monitor sensors are examined, and a level 3 data flow diagram is derived as 
shown in figure 20.6.  At level3, each transform in the data flow diagram exhibits relatively high 
cohesion(in previous chapters).  That is, the process implied by a transform performs a single, distinct 
function that can be implemented as a module in the SafeHome software.  Therefore, the DFD in figure 
20.6 contains sufficient detail for a “first cut” at the design of program structure for the monitor sensors 
subsystem, and we proceed without further refinement. 
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Figure 20.4 Level 1 DFD for SafeHome 
 
 
Step 3. Determine whether the DFD has transform or transaction flow characteristics.  In general, 
information flow with a system can always be represented as a transform.  However, when an obvious 
transaction characteristic is encountered, a different design mapping is recommended.  In this step the 
designer selects a global (software-wide) flow characteristic based on the prevailing nature of the DFD.In 
addition, local regions of transform or transaction flow are isolated.  These subflows can be used to refine 
program structure derived from a global characteristic described above.  For now, we focus our attention 
only on the monitor sensors subsystem data flow depicted in Figure 20.6.  
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Figure 20.5 Level 2 DFD that refines the monitor sensors process 
 
 
Evaluating the DFD we see data entering the software along one incoming paths and exiting along  three 
outgoing paths.   No distinct transaction center  is implied (although the transform acquire alarm 
conditions could be perceived as such). Therefore, an overall transform characteristic will be assumed for 
information flow. 
 
Step 4.  Isolate the transform center by specifying incoming and outgoing flow boundaries.  In the 
preceding section incoming flow was described as a path in which information is converted from external 
to internal form; outgoing flow converts from internal to external form.  Incoming and outgoing flow 
boundaries are open to interpretation.  That is, different designers may select slightly different points in 
the flow as boundary locations.  In fact, alternative design solutions can be derived by varying the 
placement of flow boundaries.  Although care should be taken when boundaries  are selected, a variance 
of one bubble along a flow path will generally have little impact on the final program structure. 
 
Flow boundaries for the example are illustrated as shaded curves running vertically through the flow.  the 
transforms (bubbles) that comprise the transform center lie within the two shaded boundaries that run 
from top to  bottom in the figure.  An argument can be made to readjust a boundary(e.g., an incoming 
flow boundary separating read sensors and acquire response info could be proposed).  The emphasis in 
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this design step should be on selecting reasonable boundaries, rather than lengthy iteration on placement 
of divisions. 
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Step 5. perform “first level factoring”.  Program structure represents a top down distribution of control.  
Factoring results in a program structure in which top-level modules perform decision making and low-
level modules perform  most input, computational, and output work.  Middle-level modules perform 
some control and do moderate amounts of work.  
 
When  transform flow is encountered, a DFD  is mapped to a specific structure that provides control for 
incoming, transform, and outgoing information processing.  This  first-level  factoring for the monitor 
sensors subsystem is main controller (called monitor sensors executive) resides at the top of  the program 
structure and serves to coordinate the following subordinate control functions; 
 
an incoming information processing controller, called sensor input controller, coordinated receipt of all 
incoming  data; 
 
A transformation flow controller, called alarm conditions controller, supervises all operations on data 
ininternalized form (e.g., a module that  invokes various data transformation procedures; 
 
An outgoing information processing controller, called alarm output controller, coordinated production of 
output information. 
 
Although a three pronged structure is implied by figure 20.7  complex  flows in large systems may  dictate 
two or more control modules for each of the  generic control functions described above.  The number of 
modules at the first level should be limited to the minimum that  can accomplish control functions and 
still maintain good coupling and cohesion characteristics. 
 
Step 6.  Perform “second level factoring.”  Second level factoring is accomplished by mapping individual 
transforms (bubbles) of a DFD  into appropriate modules within the program structure.  Beginning at the 
transform center boundary and moving outward along incoming and then outgoing paths, transforms are 
mapped into subordinate levels of the software structure.  The general approach to second level factoring 
for the  SafeHome data flow is illustrated in figure 20.8. 
 
Although  figure 20.8  illustrates a one-to-one mapping between DFD  transforms and software modules, 
different  mappings frequently  occur.  Tow or even three bubbles can be combined and represented as 
one  module (recalling potential problems with cohesion), or a single bubble may be expanded to two or 
more modules.  Practical considerations and measures of design quality dictate the outcome of second 
level factoring.  Review and refinement may lead to changes in this structure, but is can serve as a first 
design iteration. 
 
Second level factoring for incoming flow follows in the same manner.  Factoring is again accomplished by 
moving outward from the transform center boundary on the incoming flow side.  The transform center of 
monitor sensors  subsystem software is mapped somewhat differently.  Each of the data conversion or 
calculation transforms of the transform portion of the DFD  is mapped into a module subordinate to the 
transform controller.  A completed first iteration program structure is shown in figure 20.9. 
 
The modules mapped in the manner described above and represent an initial design of program structure.  
Although modules are named in a manner that implies function, a brief  processing narrative (adapted 
from the PSPEC  created during analysis modeling )should be written for each,. 
 
The narrative describes: 
 



Design Methods 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 253 

⊥ Information that passes into and out of the module (an interface description); 

⊥ Information that is retained by a module, e.g., data stored in a local data structure; 

⊥ A procedural narrative that indicated major decisions points and tasks; and 

⊥ A brief discussion of restrictions and special features (e.g., file I/O, hardware dependent 
characteristics, special timing requirements). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20.7 First-level factoring for monitor sensors 
 
The narrative serves as a first generation design specification.  However,  further refinement and additions 
occur regularly during this period of design. 
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Step 7  Refine the first iteration program structure using design heuristics for improved software  quality.  
A first program structure can always be refined by all paying concepts of module independence.  Modules 
are exploded or imploded to produce sensible factoring, good  cohesion, minimal coupling, and most 
important, a structure that can be implemented without difficulty, tested without confusion, and 
maintained without grief. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20.8 First level factoring for monitor sensor 
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Refinements are dictated  by practical considerations and common sense.  There are times, for example, 
when the controller for incoming data flow is totally unnecessary, when some input processing is required 
in a module that is subordinate to the transform controller, when high coupling due to global data cannot 
be avoided, or when optimal structural characteristics cannot be achieved.  Software requirements 
coupled with human judgment is the final arbiter. 
 
Many modifications  can be made to the first iteration structure developed for the SafeHome monitor  
sensors subsystem:  (1) The incoming controller can be removed because it is unnecessary when a single 
incoming flow path is to be managed.  (2) The sub substructure generated from the transform flow can be 
imploded into the module establish  alarm conditions (which will now include the processing implied by  
select phone number).  The transform controller will not be needed and the small decrease in cohesion is 
tolerable. (3) The modules format display and generate display can be imploded (we assume that display 
formatting is quite simple ) into a new module called produce display.  The refined software structure for 
the monitor sensors subsystem is shown in Figure 20.10. 
 
The objective of the preceding seven steps is to develop a global representation of software.  That is, once 
structure is defined, we can evaluate and refine software architecture by viewing it as a whole.  
Modification  made at this time require little additional work, yet can have a profound impact on software 
quality and maintainability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20.10 Refined program structure for monitor sensors 
 
The reader should pause for a moment and consider the difference between the design approach 
described above and the process of “writing programs”.  If code is the only representation of software, the 
developer will have great difficulty evaluating or refining at a global  or holistic level and will, in fact, 
have difficulty “ seeing  the forest for the trees”. 
 

20.5 Transaction Mapping 
 
In many software applications, a single data  item triggers one or a number of information flows that effect 
a function implied by the triggering data item,.  The data item, called a transaction, and its corresponding 
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flow characteristics were discussed in  previous section we consider design steps used to treat transaction 
flow. 
 
An example 
 
Transaction mapping will be illustrated by considering the user interaction  subsystem of the  SafeHome 
software.  Level 1 data flow for this  subsystem is shown as part of figure 20.4.  Refining the flow, a level 2 
data flow diagram (a corresponding data dictionary, CSPEC, and  PSPECs would also be created) is 
developed and shown in figure 20.11. 
 
As shown in figure, user commands flows into the system and results in additional information flow 
along one of three action paths.  A single data item, command type, causes the data flow to fan outward 
from a hub.  Therefore,  the overall data flow characteristic is transaction-oriented. 
    
It should be noted that information flow along two of the three action paths accommodate additional 
incoming flow (e.g., system parameters and data are input on the “configure” action path.  Each action 
path  flows into a single transfor, display messages and status. 
 
Design Steps 
 
Design  steps for transaction mapping are similar and in some cases identical to steps for transform 
mapping.  A major difference lies in the mapping of the DFD to software structure. 
 
Step 1.  Review the fundamental system model. 
Step 2.  review and refine data flow diagrams for the software. 
 
Step 3.  Determine whether the DFD  has transform or transaction flow characteristics.  Steps 1,2, and 3 
are identical to corresponding steps in transform mapping.  The DFD shown in figure 20.11 has a classic 
transaction flow characteristic.  However, flow along two of the action paths emanating from the invoke 
command processing bubble appears to have transform flow characteristics.  Therefore, flow boundaries 
must be established for both flow types. 
 
Step 4.   Identify  the transaction center and the flow characteristics along each of the action paths.  The 
location of the transaction center can  be immediately discerned from the DFD.  The transaction center lies 
at the origin of a number of actions paths that flow radically from it.  For the flow shown in figure 20.11 
the invoke command processing bubble is the transaction center. 
  
The incoming path (i.e., the flow path along which a transaction is received) and all action paths must also 
be isolated.  Boundaries that define a reception path and action paths are also shown in the figure.  Each 
action  path must be evaluated for is individual  flow characteristic. For example,  the  “password”  path 
(shown enclosed by a shaded area in figure 20.11) has transform characteristics.  Incoming, transform, and 
outgoing flow are indicated with  boundaries. 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 258 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 5.  map the DFD  in a program structure amenable to transaction processing.  Transaction flow is 
mapped into a program structure that contains an incoming branch and a dispatch branch.  Structure for 
the incoming branch is developed in much the same way as transform mapping.  Starting at the 
transaction center, bubbles along the incoming path are mapped into modules.  The structure of the 
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dispatch branch contains a dispatcher module that controls all subordinate action modules.  Each action 
flow path of the DFD  is mapped to a structure that corresponds to its specific  flow characteristics.  This 
process is illustrated in figure 20.12. 
 
Considering the user  interaction subsystem data flow,  first level factoring  for step 5 is shown in figure 
20.13.  the bubbles read user command and activate/deactivate system map directly into the program 
structure without the need for intermediate control modules.  The transaction center, invoke command 
processing, maps directly into a dispatcher module of the same name.  Controllers for system 
configuration and password processing are mapped as indicated in figure 20.12. 
 
Step 6.  Factor and refine the  transaction structure and the structure of each action path.  Each action 
path of the data flow diagram  has its own information flow characteristics.  We have already noted that 
transform or transaction flow may be encountered.  The action  path-related “substructure” is developed 
using the design steps discussed in this and the preceding section. 
 
As  an example, consider the password processing information flow shown (inside shaded area).  The flow 
exhibits classic transform characteristics.  A password is input (incoming flow) and transmitted to a  
transform center where it is compared against stored passwords.  An alarm and warning message 
(outgoing flow) are produce  (if a match is not  obtained).  The  “configure” path is drawn similarly using  
the transform mapping.  The resultant program structure is shown in figure 20.14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20.12  Transaction Mapping 
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Step 7.  Refine the first iteration  program structure using design heuristics for improved software 
quality.  This step for transaction  mapping is identical to the corresponding step for  transform mapping.  
In both  design approaches, criteria such as module independence, practicality (efficacy of implementation 
and test), and maintainability must be carefully considered as structural modifications are proposed. 
 

20.6 Design Postprocessing 
 
Successful  application of transform or transaction mapping is supplemented by  additional 
documentation that is required as part of architectural design.  After structure has been developed and 
refined, the following tasks must be completed : 
 
• A processing narrative must be developed for each module. 

• An interface description is provided for each module. 

• Local and global data structures are defined. 

• All design restrictions/limitations are noted. 

• A design review is conducted. 

• “Optimization “ is considered (if required and justified). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20.13 First level factoring for user interaction 
 
A processing narrative is (ideally) an unambiguous, bounded description of processing that occurs within 
a module.  The narrative describes processing tasks, decisions, and I/O. 
 
The interface description requires the design of internal module interfaces, external system interfaces and 
the human-computer interface.   
 
The  design of data structures can have a profound impact on program structure and the procedural 
details  for each module.  Techniques described in previous chapter establish the basic data model and 
identify all important data objects.  These then serve as the basis for the design of both local and global 
data structures. 
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Restrictions and/or limitations for each module are also documented.  Typical topics for discussion 
include restriction of data type or format, memory or timing limitations, bounding values or quantities of 
data structures, special  purpose of a restrictions/limitations section is to reduce the number of errors 
introduced because of assumed functional characteristics. 
 
Once  design documentation has been developed  for all modules,  a design review is conducted.  The 
review emphasizes trace ability to software  requirements, quality of program structure, interface 
descriptions, data structure descriptions, implementation and test practicality, and maintainability. 

20.7 Short Summary 
 

 Software design encompassed four distinct but interrelated activities:  data design, architectural 
design interface design, and procedural design. When each of these design activities has been 
completed, a comprehensive design model exists for the software.  

 Data design translates the data objects defined in the analysis model into data structures that reside 
within the software. The attributes that describe data objects, the relationships between data objects, 
and their use within the program all influence the choice of data structures.  

 The architectural design method presented in this chapter use information flow characteristics 
described in the analysis model to derive program structure.  

 A data flow diagram is mapped into program structure using one of two mapping approaches—
transform mapping and/or transaction mapping. Transform mapping is applied to an information 
flow that exhibits ;distinct boundaries between incoming and outgoing data.  

 The DFD is mapped into a structure that allocates control to input, processing, and output along three 
separately factored module hierarchies.  

 Transaction mapping is applied when a single information item causes flow to branch along one of 
many paths.  

 The DFD is mapped into a structure that allocates control to a substructure that acquires and 
evaluates a transaction. Another substructure controls all potential processing actions  based on a 
transaction.    

20.8 Brain Storm 
 
1. Explain briefly about Architectural Design ? 

2. What is Transcform Mapping ? Give a brief note on it ? 

3. Describe about Transaction Mapping ? 

4. What is SignPostprocessing ? 
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22.1 Snap Shot 
 
In this lecture, we focus on Architectureal Design Interface Design, General Interaction and Procedural 
Design. 
 

22.2 Architectural Design Optimization 
 
Any discussion of design optimization should be prefaced with the following comment:" Remember that 
an 'optimal design' that doesn't work has questionable merit." The software designer should be concerned 
with developing a representation fo software that will meet all functional and performance requirement 
and merit acceptance based on design quality measures. 
 
Refinement of program structure during the early stages of design is to be encouraged. Alternative 
representation may be derived refined and evaluated for the best approach. This approach optimization is 
one of the true benefits derived from developing a representation of software architecture. 
 
It is important to note that structural simplicity often reflects both elegance and efficiency. Design optation 
should strive for the smallest number of modules that is consistent with effective modularity and the least 
comes data structure that adequately serves information requirements. 
 
For performance critical applications it may be necessary to "optimize" during later design iterations and 
possibly during coding. The software engineer should note however that a relatively small percentage of a 
program often accounts for a large percentage of all processing time. It is not unreasonable to propose the 
following approach for performance critical software: 
 
1. Develop and refine program structure structure without concern for performance critical 

optimization. 

2. Use CASE tools that simulate run time performance to isolate areas of in efficiency. 

3. During late design iterations select modules that are suspect "time hogs" and carefully develop 
procedures for time efficiency. 

4. Code in an appropriate programming language. 

5. Instrument the software to isolate modules that account for heavy processor utilization. 

6. If necessary redesign or recode in machine-dependent language to improve efficiency. 

 
This approach follows a dictum that will be further discussed in a later chapter: "Get it to work, then make 
it fast." 
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22.3 Interface Design 
 
The architectural design provides a software engineer with a picture of the program structure  like the 
blue print for a house the overall design is not complete without a representation of doors windows and 
utility connections for wate electricity and telephone. The "doors, windows, and utility connections" for 
computer software comprise the interface design of a system. 
 
Interface design focuses on three areas of concern :(1) the design of interfaces between softwa4re modules ; 
(2)the design of interfaces between the software and other nonhuman producers and consumers of 
information (i.e., other external entities); and (3)the design of the interface between a human (i.e., the user) 
and the computer. 
 
Internal and External Interface Design 
 
The design of internal program interfaces sometimes called intermodular interface dewing is driven by the 
data that must flow between modules and the characteristics of the programming language in which the 
software is to be implemented. In general the analysis model contains much of the information required 
for intermodular interface design. The data flow diagram describes how data objects are transformed as 
they move through a system. The transforms of the DFD are mapped into modules within the program 
structure.  Therefore the arrows flowing into and out of each DFD transform must be mapped into a 
design for the interface of the module that corresponds to that DFD transform. 
 
External interface design begins with an evaluation of each external entity represented in the DFDs fo the 
analysis model. The data and control requirements of the external entity are determined and  appropriate 
external interfaces are designed. For example the SafeHome software discussed earlier in this chapter 
requires interfacing with a vari3ety or external security sensors. The design of the external interface for 
each sensor is predicated on he specific data and control items required for the sensor. 
 
Both internal and external interface designs must be coupled with data validation and error handling 
algorithms within a module. Because side effects propagate across program interfaces it is essential to 
check all data flowing from module to module to ensure that the data conform to bounds established 
during requirement analysis. 
 
User Interface Design 
 
In the preface to his book on user interface design, Ben Shneiderman states: Frustration and anxiety are 
part of daily life for many users of computerized information systems. They struggle to learn command 
language or menu selecting systems that are supposed to help them do their job. some people encounter 
such serious cases of computer shock terminal or network nerosis that they avoid using computerized 
systems. 
The problem to which Shneiderman alludes are real. We have all encountered "interfaces" that are difficult 
to learn difficult to use confusing unforgiving and in many causes , totally frustrating. Yet someone spent 
time and energy building each of these interfaces and it is likely that the builder did not create these 
problems purposely. 
 
User interface design has as much to do with the study of people as it does with technology issues. Who is 
the user? How does the user learn to interface with a new computer-based system? How does the user 
interpret information produced by the system? What will the user expect of the system? These are only a 
few of the many questions that must be asked and answered as part of user interface design. 
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22.4 Human-Computer Interface Design 

 
The overall process for designing a user interface design with the creation of different models of system 
function. The human and computer-oriented tasks that are required to achieve system  function are then 
delimited; design issues that apply to all interface designs model and  the result is evaluated for quality. 
 
Interface Design Models 
 
Four different models come into play when a human computer interfaces is to be designed. The software 
engineer creates a design model, a human engineer  establishes a user model the end user develops a 
mental image that is often called the user's model or the system perception and the implementers of the 
system create a system image. Unfortunately these models may differ significantly. The role of interface 
designer is to reconcile these differences and derive a consistent representation of the interface. 
 
A design model of the entire system incorporates data architectural interface and procedural 
representations of the software. The requirements specification may establish certain constraints that help 
to define the user of the system but the interface design is often only incidental to the design model. 
 
The user model depicts the profile of end users of the system. To build an effective user interface "all 
design should begin with an understanding of the intended user including profile of their age, sex , 
physical abilities, education, cultural, or ethnic background motivation goals and personality" In addition 
users can be categorized as: 
 
• novices --no syntactic knowledge of the system and little semantic knowledge of the application or 

computer usage in general; 
 
• Knowledgeable intermittent users-- reasonable semantic knowledge of the application but relatively 

low recall of syntactic information necessary to use the interface; and 
 
• Knowledgeable, frequent users -- good semantic and syntactic knowledge that often leads to the 

"power-user syndrome" that is individuals who look of shortcuts and abbreviated modes of 
interaction. 

 
The system perception is the image of the system that an end user carries in his or her head. For example if 
the user of a particular word processor were asked to describe its operation the system perception would 
guide the response. The accuracy of the description will depend upon the user's profile (e.g., novices 
would provide a sketchy response at best) and overall familiarity with software in the application domain. 
A user who understands word processors fully but has only worked with the specific work processor 
once, might actually be able to provide a more complete description of its function than the novice who 
has spent weeks trying to learn the system. 
 
The system image couples the outward manifestation of the computer based system (the look nad feel of 
the interface) with all supporting information (books, manuals, video tapes) that describe system syntax 
and semantics .When the system image and the system image and the system perception are coincident , 
users generally feel comfortable with the software and use it effectively. To accomplish this "melding " of 
the models the design model must have been developed to accommodate the information contained in the 
user model ant he system image must accurately reflect syntactic and semantic information about the 
interface. The interrelationship among the models is shown if Figure 22.2. 
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The models described in this section are "abstractions of what the user is doing or thinks he is doing or 
what somebody else thinks he ought to be doing when he uses an interactive style" In essence these 
models enable the interface designer to satisfy a key element of the most important principle of user 
interface design: "Know the user, know the tasks." 
 
Task Analysis and Modeling 
 
Task analysis and modeling can be applied to understand the tasks that  people currently perform (when 
using a manual or semi automated approach) and then map these into a similar (but not necessarily 
identical )set of tasks that are implemented in the context of the HCI. This can be accomplished by 
observation or by studying an existing specification of a computer- based solution and deriving a set of 
user tasks that will accommodate the user model the design model and the system perception. 
 
Regardless of the overall approach to task analysis the human engineer must first define and classify 
tasks. One approach is stepwise elaboration . For example assume that a small software software company 
want to build a computer aided design system explicitly for interior designers. By observing a designer at 
work the engineer notices that the interior design is comprised of a number of major activities : furniture 
layout fabric and material selection wall and window covering selection presentation (to the customer), 
costing and shopping. Each of these major tasks can be elaborated into subtasks. For example , furniture  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22.2 Relating interface design models 
 
layout can be refined into the following tasks: (1)Draw floor plan based on room dimensions; (2)place 
windows and doors at appropriate locations; (3)use furniture templates to draw scaled furniture outlines 
on floor plan:(4) move furniture outline to get best placement; (5) label all furniture outline; (6)draw 
dimensions to show location and (7)draw perspective view for customer. A similar approach could be 
used for each f the other major tasks. 
 
Subtasks 1 to 7 can each be refined further. Subtasks 1 to 6 will be performed by manipulation information 
and performing actions with the user interface. On the other hand subtask 7 can be performed 
automatically in software and will result in little direct user interaction. The design model of the interface 
should accommodate each of these tasks in a way that is consistent with the user model (the profile of a 
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"typical" interior designer) and system perception (what the interior designer expects from a automated 
system). 
 
An alternative approach to task analysis takes an object-oriented point of view. The human engineer 
observes the physical objects that are used by the interior designer and the actions that are applied to each 
object. For example interior the furniture template would be an object in this approach to task analysis The 
interior designer would select the appropriate template move it to a position on the floor plan trace the 
furniture outline and so fourth. The design model for the interface would not describe implementation 
details for each of these actions but it would define user tasks that accomplish the end result (drawing 
furniture outline on the floor plan). 
 
Once each task or action has been defined interface design begins. The first steps in the interface design 
process can be accomplished using the following approach: 
 
1. Establish the goals and intentions for the task 

2. Map each goals intention to a  sequence of specific actions 

3. Specify the action sequence s it will be executed at the interface level. 

4. Indicate the state of the system ; i.e., what does the interface look like at the time that an actionist eh 
sequence is performed? 

5. Define control mechanism i.e., the devices and action available to the user to alter the system state. 

6. Show how control mechanism affect the state of the system. 

7. Indicate how the user interprets the state of the system from information provided through the 
interface. 

 
Design Issues 
 
As the design of a user interface evolves four common design issues almost always surface system 
response time user help facilities error information handling and command labeling . unfortunately, many 
designers do not address these issues until relatively late in the design process (sometimes the first linking 
of a problem doesn't occur until an operational prototype is available) Unnecessary interaction project 
delays and customer frustration 2almost always result. it is far better to establish was as a design issue to 
be considered at the beginning of software design when changes are easy and costs are low.  
 
System response time is the primary complaint for many interactive systems. In general system response 
time is measured from the point at which the user performs some control action (e.g., hits the return key 
or clicks a mouse) until the software responds with desired output or action. 
 
System response time has two important characteristic: length and variability. If the length of time for 
system response time is too long user frustration and stress is the inevitable result. However a very brief 
response time can also be detrimental if the user is being paced by the interface. A rapid response may 
force the user to rush and therefore make mistakes. 
 
Variability refers to he deviation from average response time and in many ways it is the more important 
or the response time characteristics. Low variability enables the user to establish a rhythm even if response 
time is relatively long. For example one second response to a command is preferable to a  response that 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 270 

varies from 0.1 to 2.5 seconds. The user is always off balance always wondering whether something 
"different" has occurred behind the scenes. 
Almost every user of an interactive, computer-based system requires help now and then, in some cases a 
simple question addressed to a knowledgeable colleague can do the trick. In others detailed research h in a 
multivolume set of user manuals may be the only option. in many cases however modern software 
provides on line help facilities that enable a user to get a question answered or resolve a problem without 
leaving the interface. 
 
Two different types of help facilities are encountered integrated and add on. An integrated help facility is 
designed into the software from the beginning. It is often context sensitive enabling the user to select from 
those topics that are relevant to the actions currently being performed. Obviously, this reduces the time 
required for the user to obtain help and increases the "friendliness " of the interface. An add-on help 
facility is added to the software after the system has been built. In many ways, it is really an on-line user's 
manual with limited query capability. The user may have search through a list of hundreds of topics to 
find appropriate guidance often making many false starts and revenging much irrelevant information . 
There e is little doubt that the integrated help facility is preferable to a the add-on approach. 
 
A number of design issues must be addressed when a help facility is considered: 
 
• Will help be available for all system functions and at all times during system interaction ? Options 

include help only for a subset of all functions and actions and help for all functions. 

• How will the user request help? Options include data help menu a special function key and a HELP 
command . 

• How will help be represented ? Options include a separate window a reference to a printed document 
and a one or two line suggestion produced in a fixed screen location. 

• How will the user return to normal interaction? Options include are turn button displayed on the 
screen and a function key or control sequence. 

• How will help information be structured? Options include a "flat" structure in which all information 
is accessed through a keyword a layered hierarchy of information that provides increasing detail as 
the user proceeds into the structure and the use of hypertext. 

 
Error messages and warning are "bad news " delivered to user's of interactive systems when something 
has gone awry. At their worst error messages and warning impact useless or misleading information and 
serve only to increase user frustration. Few computer users have not encountered an error of the form; 
 
Severe System Failure –14A 
 
Some where an explanation for error 14A must exist; otherwise why would the designers have added the 
identification? Yet the error message provides no real indication of what is wrong or where to look to get 
additional information. An error message presented in the manner shown above does nothing to assuage 
user anxiety or to help correct the problem. 
 
In general every error message or warning produced by an interactive system should have the following 
characteristics: 
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• The message should describe the problem in jargon that the user can understand. 

• The messages should provide constructive advice for recovering from the error. 

• The message should indicate any negative consequences of the error (e.g., potentially corrupted data 
files) so that the user can check to ensure that they have not occurred (or correct them if they have) 

• The message should be accompanied by an audible or visual cue. That is a beep might be generated to 
accompany the display of the message, or the message might flash momentarily or be displayed in a 
color that is easily recognizable as the "error color". 

• The message should be " nonjudgmental." That is the wording should never place blame on the user. 

 
Because no one really likes bad news few users will like an error message no matter how well it is 
designed. But an effective error message philosophy can do much to improve the quality of an interactive 
system and will significantly reduce user frustration when problems do occur. 
 
The typed command was once the most common mode of interacting between user and system software 
and was commonly used for application of every type. Today the use of window-oriented point and pick 
interfaces has reduced reliance on typed commands, but many power-users continue to prefer a 
command-oriented mode of interacting. In many situations the ser can be provided with an option 
software functions can be selected from a static or pull down menu or invoked through some keyboard 
command sequence. 
 
A number of design issues arise when commands are provided as a mode of interaction: 
 
• Will every menu option have a corresponding command? 

• What form will commands take? Options include a control sequence (e.g., ^P), functions keys and a 
typed word. 

• How difficult will it be to learn and remember the command?  What can be done if a command is 
forgotten?  

• Can commands be customized or abbreviated by the user? 

In a growing number of applications interface designers provide a commands under a user-defined name. 
Instead of each command being typed individually the command macro is typed and all commands 
implied by it are executed in sequence. 
 
In an ideal setting conventions for command usage should be established across all applications. It is 
confusing and often error-prone for a user to type ^D when a graphics object is to be duplicated in one 
application and ^D when a graphics object is to be deleted in another. The potential for error is obvious. 
 
Implementation Tools 
 
The process of user interface design is interactive. That is a design model is created implemented as a 
prototype examined by users (who fit the user model described earlier) and modified based on their 
comments. To accommodate this interactive design approach a broad class of interface design and 
prototyping tools has evolved. Called user interface toolkits or user interface development systems (UIDS) 
these tools provide routines or objects that facilitate creation of windows, menus, device interaction, error 
messages, commands and many other elements of an interactive environment. 
 
Using prepackaged software that can be used directly by the designers and implementer or a user 
interface, a UIDS provides built in mechanism for: 
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• Managing input devices (such as the mouse or keyboard); 

• Validating user input; 

• Handling errors and displaying error messages; 

• Providing feedback (e.g., automatic input echo); 

• Providing help and prompts; 

• Handling windows and fields, scrolling within windows; 

• Establishing connections between application software and the interface; 

• Insulating the application from interface management functions; and 

• Allowing the user to customize the interface 

 
The functions described above can be implemented using either a language based or a graphical approach. 
 
Design Evaluation 
 
Once an operational user interface prototype has been created it must be evaluated to determine whether 
it meets the needs of the user. Evaluation can span a formality spectrum that ranges from an informal "test 
drive" in which a user provides imprompt feedback to a formally designed study that uses statistical 
methods for the evaluation of questionnaires completed by a population of end users. 
 
The user interface evaluation cycle takes the from shown in Figure 22.3. After the preliminary design has 
been completed a first level prototype is created. The prototype is evaluated by the user who provides the 
designer with direct comments about the efficacy of the interface. In addition if formal evaluation 
techniques are used (e.g., questionnaires rating sheets) the designer may extract information form this 
information (e.g., 80 percent of all users did not like the mechanism for saving data files). Design 
modification are made based on user input and the next level prototype is created. The evaluation cycle 
continues until no further modifications to the interface design are necessary. But is it possible to evaluate 
the quality of a user interface before a prototype is built? If potential problems can be uncovered and 
corrected early the number of loops through the evaluation cycle will be reduced and development time 
will shorten. 
 
When a design model of the interface has been created a number of evaluation criteria can be applied 
during early design reviews: 
 
1. The length and complexity of the written specification of the system and its interface provide an 

indication of the amount of learning required by users of the system. 
 
2. The number of commands or actions specified and teh average number of arguments per command 

or individual operations per action provide an indication of interaction time and the overall efficiency 
of the system. 

 
3. The number of actions commands and system states indicated byte design model indicate the 

memory load on users of the system. 
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Figure 22.3 The  interface design evaluation design 
 
4. Interface style help facilities and error handling protocols provide a general indication of the 

complexity of the interface and the degree to which it will be  accepted by the user. 
 
Once the first prototype is built the designer can collect a variety of qualitative and quantitative data that 
will assist in evaluating the interface. To collect qualitative data questionnaires can be distributed to user 
of the prototype can be (1) simple yes/no (2) numeric (3) scaled (subjective), (4)percentage (subjective ). 
Examples are: 
 
1.  Were the commands easy to remember? 

2.  How many different commands did you use? 

3.  How easy was it to learn basic system operations?  

4.  Compared to other interfaces you've used, how would this rate? (top 1%,top10%, top 25%, top 50%, 
bottom 50%) 

 
If qualitative data are desired a form of time study analysis can be conducted. Users are observed during 
interaction and data such as number of tasks correctly completed over a standard time period, frequency 
of command use , sequence of commands, time spent "looking " at eh display, number of errors types of 
error and error recovery time, time spent using help and number of help references per standard time 
period are collected and used as a guide for interface modification  
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A complete discussion of user interface evaluation methods is beyond the scope of this book. For further 
information see [LEA88]. 
 

22.5 General Interaction 
 
Guidelines for general interaction often cross the boundary into information display data entry and 
overall system control. They are therefore all-encompassing and are ignored at great risk. The following 
guidelines focus on general interaction: 
 
Be Consistent. Use a consistent format for menu selection command input data display and the myriad 
other functions that occur in a HCI. 
 
Offer meaningful feedback Provide the user with visual and auditory feedback to ensure that two way 
communication (between user and interface )is established . 
 
Ask for verification 0f any nontrivial destructive action  If a user requests the deletion of a file indicates that 
substantial information’s to be overwritten or asks for the terminating of a program an "Are you sure...?" 
message should appear. 
 
Permit easy reversal of most actions. UNDO or REVERSE functions have saved tens of thousands of end 
users from millions of hours of frustration . Reversal should be available in every interactive application. 
 
Reduce the amount of information that must be memorized between actions. The user should not be expected to 
remember a list  of numbers or names so that he or she can reuse them in a subsequent function. memory 
load should be minimized. 
 
Seek efficiency in dialog, motion, and thought. Keystroke should be minimized the distance a mouse must 
trace between picks should be considered in designing screen layout, the user should rarely encounter a 
situation where he or she asks , " Now what does this mean?" 
 
Forgive mistakes. The system should protect itself from errors that might cause it to fail. 
 
Categorize activities by function and organize screen geography accord singly. One of the key benefits of the pull-
down menu is the ability to organize command by type. In essence the designer should strive for 
"cohesive" placement of commands and actions. 
 
Provide help facilities that are context sensitive.   
 
use simple auctioneers or short verb phrases to name commands. A lengthy command name is more difficult to 
recognize and recall. It may also take up unnecessary space in menu lists.  
 
Information Display 
 
If information presented by the HCI is incomplete, ambiguous or unintelligible , the application will fail to 
satisfy the needs of a user, Information is "displayed " in many different ways: with text pictures and 
sound; by placement, motion, and size; and using color resolution and even omission. The following 
guidelines focus on information display: 
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Display only that information that is relevant to the current context.  The user should not have to wade through 
extraneous data, menus and graphics to obtain information relevant to a specific system function. 
Don't bury the user with data use a presentation format that enables rapid assimilation of information. Graphs or 
charts should replace voluminous tables. 
 
Use consistent labels, standard abbreviations and predictable colors.  The meaning of a display should be 
obvious without reference to some outside source of information. 
 
Allow the user to maintain visual context. If graphical representations are scaled up and down, the original 
image should be displayed constantly (in reduced form at the corner of the display) so that the user 
understands the relative location of the portion of the image that is currently being viewed. 
 
Produce meaningful error messages.   
 
Use upper and lower case , identification and text grouping to aid in understanding. Much of the information 
imparted by a HCI is textual and the layout and form of the text ahs a significant impact on the ease with 
which information is assimilated by the user. 
 
Use windows to compartmentalize different types of information. Windows enable the user to "keep " many 
different types of information within easy reach. 
 
Use 'analog' displays to represent information that is more easily assimilated with this form of representation.  For 
example a display of holding tank pressure in an oil refinery would have little impact if a numeric 
representation were used. However if a thermometer like display were used vertical motion and color 
changes could be used to indicate dangerous pressure conditions. This would provide the user with both 
absolute and relative information. 
 
Consider the available geography of the display screen and use it efficiently.  When multiple windows are to be 
user, space should be available to show at least some portion of each. In addition screen size (a system 
engineering issue) should be selected to accommodate the type of application that is to be implemented. 
 
Data Input 
 
Much of the user's time is spent picking commands typing data and otherwise providing system input. In 
many application the keyboard remains in the primary input medium, but the mouse, digitizer and even 
voice recognition systems are rapidly becoming effective alternatives. The following guidelines focus on 
data input: 
 
Minimize the number of input actions required of the user. Above all reduce the amount of typing that is 
required. This can be accomplished by using the mouse to select from predefined sets of input using 
"sliding scale" to specify input data across a range of values and using macros that enable a single 
keystroke to be transformed into a more complex collection of input data. 
 
Maintain consistency between information display and data input. The visual characteristics of the display (e.g., 
text size, color, and placement) should be carried over to the input domain. 
 
Allow the user to customize input. An expert user might decide to create custom commands or dispense with 
some types of warning messages and action verification. The HCI should allow this. 
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Interaction should be flexible but also tuned to the user's preferred mode of input. The user model will assist in 
determining which mode of input is preferred. A clerical worker might be very happy with keyboard 
input while a mange might be more comfortable using a point and pick device such as a mouse. 
 
Deactivate commands that are inappropriate in the context of current actions. This protects the user from 
attempting same action that could result in an error. 
 
Let the user control the interactive flow. The user should be able to jump unnecessary actions, change the 
order of required actions(when possible in the context of an application) and recover form error conditions 
without exiting from the program. 
 
Provide help to assist with all input actions.   
 
Eliminate "Mickey mouse" input. Do not require the user to specify units for engineering input(unless there 
may be ambiguity). Do not require the user to type .00 for whole number dollar amounts, provide default 
values whenever possible and never require the user to enter information that can be acquired 
automatically or computed within the program. 
 

22.6 Procedural Design 
 
Procedural design occurs after data , architectural and interface design have been established. in an ideal 
world the procedural specification required to define algorithmic details would be stated in a natural 
language such as English. After all members of a software development organization all speak a natural 
language people outside the software domain could moved readily understand the specification and no 
new learning would be required.  
 
Unfortunately there is one small problem. Procedural design must specify procedural detail 
unambiguously and a lack of ambiguity in a natural language in not natural. Using a natural language we 
can write a set of procedural steps in too many different ways. We frequently rely on context to get a point 
across. We often write as if a dialog with the reader were possible. For these and many other reasons a 
more constrained mode for representing procedural detail must be used. 
 
Structured Programming 
 
The foundation of procedural design were formed in the early 1960s and were solidified with the work of 
Edgar Dijkstra and his colleagues. In the late 1960s Dijkstra and others proposed the use of a set of existing 
logical constructs from which any program could be formed. The constructs emphasized " maintenance of 
functional domain" That is each construct has a predictable logical structure was entered at the top and 
exited at the bottom enabling a reader to a follow procedural flow more easily. 
 
The constructs are sequence, condition and repetition. Sequence implements processing steps that are 
essential in the specification of any algorithm condition provides the facility for selected processing based 
on some logical occurrence and repetition provides for looping. These three constructs are fundamental to 
structured programming an important procedural design technique. 
 
The structured constructs were proposed to limit the procedural design of software to a small number of 
predictable operations. Complexity metrics indicate that the use of the structured constructs reduces 
program complexity and thereby enhances readability, testability and maintainability. The use of a limited 
number of logical constructs also contributes to a human understanding process that psychologists call 
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chunking. To understand this process consider how you are reading this page. You do not  read 
individual letters; rather you recognize patterns or chunks of letters that form words or phrases. The 
structured constructs are logical chunks that allow reader to recognize procedural elements of a module 
rather than read the design or code line by line. Understanding is enhanced when readily recognizable 
logical forms are encountered. 
 
Any program regardless of application area or technical complexity can be designed and implemented 
using only the three structured constructs. It should be noted however that dogmatic use of only these 
constructs can sometimes cause practical difficulties.  
 
Graphical Design Notation 
 
"A picture is worth a thousand words" but it's rather important to know which picture and which 1000 
words. There is no question that graphical tools , such as the flowchart or box diagram , provide excellent 
pictorial patterns that readily depict procedural detail. However if graphical tools are misused, the wrong 
picture may lead to the wrong software. 
 
The flowchart was once the most widely used graphical representation for procedural design. 
Unfortunately it was the most widely abused method as well. 
 
The flowchart is quite simple pictorially. A box is used to indicate a processing step. A diamond 
represents a logical condition and arrows show the flow of control. Figure 22.4 illustrates the three 
structured constructs.  Sequence is represented as two processing boxes connected by a line of control. 
Condition also called if-then-else is depicted as a decision diamond which if true causes then part 
processing to occur and if false invokes else-part processing. Repetition is represented using two slightly 
different forms. The do-while tests a condition and executes a loop task repetitively as long as the 
condition holds true. A repeat-until executes the look task first then tests a condition and repeats the task 
until the condition fails. The selection construct shown in the figure is actually an extension of the if-then-
else. A parameter is tested by successive decisions until a true condition occurs and a case part processing 
path is executed.  
 
The structured constructs may be nested within one another as shown in Figure 22.5. In the figure a 
repeat-until forms the then part of an if-then0else (shown enclosed by theouter dashed boundary). 
Another if-then-else forms the else-part of the larger condition. Finally, the condition itself becomes a 
second block in a sequence. By nesting constructs in this manner, a complex logical schema may be 
developed. It should be noted that any one of the blocks in Figure 22.5 could reference another module, 
thereby accomplishing procedural layering implied by program structure. 
 
In general the dogmatic use of only the structured constructs can introduce inefficiency when an escape 
from a set of nested loops or nested conditions is required. More important, additional complication of all 
logical tests along the path of escape can cloud software control flow, increase the possibility of error and 
have negatives impact on readability and maintainability. What can we do? 
 
The designers left with two options: (1) The procedural representation is redesigned so that the "escape 
branch" is not required at a nested location in the flow of control; or (2) the structured constructs are 
violated in a controlled manner ; that is a constrained branch out of the nested flow is designed. Option 1 
is obviously the ideal approach but option can be accommodated without violating of the spirit of 
structured programming. 
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Figure 22.4 Flowchart constructs 
 
 
Another graphical design tool, the box diagram evolved from a desire to develop a procedural design 
representation that would not allow violation of the structured constructs. Developed by Nassi and 
Shneiderman and extended by Chapin the diagrams (also called Nassi-Shneiderman charts, N-S charts or 
Chapin charts) have the following characteristics:(1) functional domain (that is the scope of repetition or 
an if-then-else) is well defined and clearly visible as a pictorial representation; (2) arbitrary transfer of 
control is impossible; (3)the scope of local and/or global data can be easily determined and (4) recursion is 
easy to represent. 
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Figure 22.5 Nesting constructs 
 
The graphical representation of structured constructs using the box diagram is illustrated in Figure 22.6.  
The fundamental element of the diagram is a box. To represent sequence two boxes are connected bottom 
to top. To represent an if-then-else a condition box is followed by a then-part box and else-part box. 
Repetition is depicted with a bounding pattern that encloses the process to be repeated. Finally selections 
represented using the graphical form shown at the bottom right of the figure. 
 
Like flowcharts a box diagram is layered on multiple pages a processing elements of a module are refined 
. A "call" to a subordinate module can be represented by a box with the module name enclosed by an oval. 
 
In many software applications a module may be required to evaluate a complex combination of conditions 
and select appropriate actions based on these conditions. Decision tables provide a notation that translates 
actions and  conditions into a tabular form. The table is difficult to misinterpret and may even be used as a 
machine readable input to a table driven algorithm . In a comprehensive treatment of this design tool Ned 
Chapin states [HUR83] 
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Figure 22.6 Box diagram constructs 
 
Some old software tools and techniques mesh well with new  tools and techniques of software engineering 
. Decision tables are an excellent example Decision tables preceded software engineering by nearly a 
decade but fit so well with software engineering that they might have been designed for that purpose. 
 
Decision table organization is illustrated in Figure 22.7. The table is divided into four sections. The upper 
left hand quadrant contains a list of all conditions. The lower left hand quadrant contains a list of all 
actions that are possible based on combinations of conditions. The right hand quadrants form a matrix 
that indicates conditions, combinations and the corresponding actions that will occur for a specific 
combination. Therefore each column of the matrix may be interpreted as a processing rule. 
 
The following steps are applied to develop a decision table: 
 
1. List all actions that can be associated with a specific procedure (or module). 

2. List all condi6tins (or decisions made) during execution of the procedure. 

3. Associate specific sets conditions with specific actions, elimination impossible combinations of 
conditions; alternatively develop every possible permutation of conditions. 

4. Define rules by indicating what action or actions occur for a set of conditions. 

 
To illustrate the use of a decision table consider the following excerpt from a processing narrative for a 
public utility billing system: 
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Figure 22.7 Decision table nomenclature 
 
[I]f the customer account is billed using a fixed rate method, a minimum monthly charge is assessed for 
consumption of less than 100 kWh . Otherwise computer billing applies a Schedule A rate structure. 
However if the account is billed using a variable rate method, a Schedule A rate structure will apply to 
consumption below 100 kWh with additional consumption billed according to Schedule B. 
 
Figure 22.8 illustrates a decision table representation of the preceding narrative . Each of the five rules 
indicates one of five viable conditions (e.g., a “T” (true) in both fixed rate and variable rate account makes 
no sense in the context of this procedure ) As a general rule the decision table  can be effectively used to 
supplement other procedural design notation. 
 
Program Design Language 
 
Program Design Language (PDL) also called structured English or pseudocode,  is “a pidgin language in 
that it uses the vocabulary of one language(i.e., English )and the overall syntax of another (i.e., a 
structured programming language)” In this chapter PDL is used as a generic reference for a design 
language. 
 
At first glance PDL looks something like any modern programming language. The difference between 
PDL and a modern programming language lies in the use of narrative text (e.g., English) embedded 
directly within PDL statements. Because narrative text is embedded directly into a syntactical structure, 
PDL cannot be compiled . However PDL “processors” currently exist to translate PDL into a graphical 
representation (e.g., a flowchart) of design and produce nesting  maps a design operation index cross 
reference tables and a variety of other information. 

                                                     1     2    3     4     5    6     7    8     9  10 Rule number 

Condition rows 

Action rows 

Rules 

DECISION TABLE 
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Figure 22.8 Resultant decision table 
 
A program design language Amy be a simple transposition of a language such as Ada or C. Alternatively 
it may be a product purchased specifically for procedural design. Regardless of origin a design language 
should have the following characteristics: 
• A fixed syntax of keywords that provide for all structured constructs data declarations and 

modularity characteristics. 

• A free syntax of natural language that describes processing features; 

• Data declaration facilities that should include both simple (scalar, array) and complex (linked list or 
tree) data structures; and 

• Subprogram definition and calling techniques that support various modes of interface description. 
Today a high order programming language is often used as the basis for a PDL. For example, Ada-
PDL is widely used in the Ada community as a design definition tool. Ada language constructs and 
format are “mixed” with English narrative to form the design language.  

 
A basic PDL syntax should include constructs for subprogram definition interface description and data 
declaration; and techniques for block structuring condition constructs repetition constrictors and I/O 
constructs. The format and semantics for some of these PDL constructs are presented in the section that 
follows. 
 
It should be noted that PDL can be extended to include keywords for multitasking and/or concurrent 
processing, interrupt handling interproces`s, synchronization and many other features. The application 
design for which PDL is to be used should dictate the final form for the design language. 
 
A PDL Example 
 
To illustrate the use of PDL, we present an example of a procedural design for the SafeHome security 
system software introduced in earlier chapters.  The SafeHome system in question monitors alarms for 
fire, smoke, burglars, water (flooding), and temperature (e.g. furnace  breaks while home owner is away 
during winter);  produces an alarm signal; and calls a monitoring service, generating a voice synthesized 
message.  In the PDL that follows, we illustrate some of the important.  
 

Conditions 

                                                     1     2    3     4     5  
 
 

Fixed rate account  T     T    F    F     F
 

Variable rate account                    F     F   T    T     E
 

Consumption <100 KWH               T    F    T    F 
 

Consumption> 100 KWH              F     T    F    T 
 

Minimum monthly charge             X 
 

Schedule  A billing                              X     X 
 

Schedule B billing                                            X 
 
Other treatment                                                       X

Actions 
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Recall that PDL is not a programming language.  The designer can adapt as required without worry of 
syntax errors.  However, the design the monitoring software would have to be reviewed ( do you see any 
problems) and further refined before code could be written.   The following PDL defines an elaboration  of 
the procedural design for the security monitor procedure. 
 

22.7 Short Summary 
 

 Interface design encompasses internal and external program interfaces and the design of the user 
interface. Internal and external interface design are guided by information obtained from the analysis 
model.  

 The user interface design process begins with task analysis and modeling, a design activity that 
defines user tasks and actions using either a elaborative or object-oriented approach.  

 Design issues such as response time, command structure, error handling, and help facilities are 
considered, and a design model for the system is refined.  

 A variety of implementation tools are used to build a prototype for evaluation by the user.  

 A set of generic design guidelines govern general interaction information display , and data entry.  

 Design notation, coupled with structured programming  concepts, enables the designer to represent 
procedural detail in a manner that facilitates translation to code. Graphical, tabular, and textual  
notations are available. 

 Data structure is developed, program architecture is established, modules are defined, and interfaces 
are established. This blueprint for implementation forms the basis for all subsequent software 
engineering work.   

22.8 Brain Storm 
 
1. Explain briefly about Architectural Design Optimization ? 

2. What is Interface Design ? 

3. Discuss about Human – Computer Interface design ? 

4. What is Design Evaluation ? 

5. Explain briefly about Procedural Design ? 

6. Give a Short Note on Program Desing Language ? 

 

Lecture 23 
 

Discussion 
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In this lecture you will 
learn the following 

 
 About   System Consideration  

 About Real Time System 
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24.1 Snap Shot 
 
Like any computer-based system, a real-time system must integrate hardware, software, human and 
database elements to properly achieve a set of functional and performance requirements. In lecture 12, we 
examined the allocation task for computer-based systems, indicating that the system engineer must 
allocate function and performance among the system elements. The problem for real time systems is 
proper allocation. Real-time performance is often as important as function, yet allocation decisions that 
relate to performance are often difficult to make with assurance. Can a processing algorithm meet severe 
timing constraints, or should we build special hardware to do the job? Can an off-the-shelf operating 
system meet our need for efficient interrupt handling, multi-tasking and communication or should we 
build custom executive? Can specified hardware coupled with proposed software meet performance 
criteria? These and many other questions must be answered by the real-time system engineer. 
 
A comprehensive discussion of all elements of real-time systems is beyond the scope of this book. Among 
a number of good sources of information are [SAV85],[ELL94] and [sel94]. However it is important that 
we understand each of the elements of a real-time system before discussing software analysis and design 
issues. 
 
Everett[EVE95] defines three characteristics that differentiate real-time software development from other 
software engineering efforts: 
 
• The design of  a real-time system is resource constrained. The primary resource for a real-time system 

is time. It is essential to complete a defined task within a given number of CPU cycles. In addition, 
other system resources such as memory size, may be traded against time to achieve system objectives. 

 
• Real-time systems are compact yet complex. Although a sophisticated real-time system may contain 

well over a million lines of code, the time-critical portion of the software typically represents a very 
small percentage of the total. It is this small percentage of code that is the most complex ( from an 
algorithmic point of view) 

 
• Real-time systems often work without the presence of a human user. Therefore, real-time software 

must detect problems that lead to failure and automatically recover from these problems before 
damage to data and the controlled environment occurs. 

 
In the section that follows, we examine some of the key attributes that differentiate real-time systems from 
other types of computer software. 

 
24.2 Real-Time Systems 

 
Real-time systems generate some action in resoponse to external events. To accomplish this function, they 
perform high-speed data acquistion and control under severe time and reliability constraints. Because 
these constraints are so stringent, real-time systems are frequently dedicated to a single application. 
 
Real-time systems are used widely for diverse applications that include military command and control 
systems, consumer electronics, process control, industrial automation, medical and scientific research, 
computer graphics, local and wide area communication, aerospace systems, computer-aided testing and a 
vast array of industrial instrumentation. 
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Integration and Performance Issues 
 
Putting together a real-time system presents the system engineer with difficult hardware and software 
decisions. (The allocation issues associated with hardware for real-time systems are beyond the scope of 
this book; see [SAV85] for additional information). Once the software element has been allocated, detailed 
software requirements are established and a fundamental software design must be developed. Among 
many real-time design concerns are coordination between the real-time tasks, processing of system 
interrupts. I/O handling to ensure that no data are lost, specifying the system’s internal and external 
timing constraints and ensuring the accuracy of its database. 
 
Each real-time design concern for software must be applied in the context  of system performance. In most 
cases, the performance of a real-time system is measured as one or more time related characteristics, but 
other measures such as fault-tolerance may also be used. 
 
Some real-time systems are designed for applications in which only the response time or the data transfer 
rate is critical. Other real-time applications require optimization of both parameters under peak loading 
conditions. What’s more real-time systems must handle their peak loads while performing a number of 
simultaneous tasks. 
 
Since the performance of a real-time system is determined primarily by the system response time and its 
data transfer rate, it is important to understand these two parameters. System response time is the time 
within which a system must detect an internal or external event and respond with an action. Often event 
detection and response generation are simple. It is the processing of the information about the event to 
determine the appropriate response that may involve complex, time-consuming algorithms. 
 
Among the key parameters that affect the response time are context switching and interrupt latency. 
Context switching involves the time and overhead to switch among tasks, and interrupt latency is the time 
lag before the switch is actually possible. Other parameter that affects response time are the speed of 
computation and the speed of access to mass storage. 
 
The data transfer rate indicates how fast serial or parallel data as well as analog or digital data must be 
moved into or out of the system. Hardware vendors often quote timing and capacity values for 
performance characteristics. However hardware specifications for performance are usually measured in 
isolation and are often of little value in determining overall real-time system performance. Therefore I/O 
device performance, and a host of other factors although important are only part of the story of real-time 
system design. 
 
Real-time systems are often required to process a continuous stream of incoming data. Design must 
ensure that data are not missed. In addition, a real time system must respond to events that are 
asynchronous. Therefore, the arrival sequence and data volume cannot be easily predicated in advance. 
 
The need for reliability however, has spurred an ongoing debate about whether on-line systems, such as 
airline reservation systems and automatic bank tellers also qualify as real-time. On one hand such on-line 
systems must respond to external interrupts within prescribed response times on the other of one second. 
On the other hand nothing catastrophic occurs if an on-line system fails to meet response requirements; 
instead, only system degradation results. 
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Interrupt Handling 
 
One characteristic that serves to distinguish real-time systems from any other type is interrupt handling. A 
real-time system must respond to external stimuli-interrupts-in a time frame dictated by the external 
world. Because multiple stimuli(interrupts) are often present, priorities and priority interrupts must be 
established. In other  words, the most important task must always be serviced within predefined time 
constraints regardless of other events. 
 
Interrupts handling entails  not only storing information so that the computer can correctly restart the 
interrupted task, but also avoiding deadlocks and endless loops. The overall approach to interrupt 
handling is illustrated in figure 24.1.  Normal processing flow is “interrupted” by an event that is detected 
by processor hardware. An event is any occurrence that requires immediate service and may be generated 
by either hardware or software. The state of the interrupted program is saved (i.e., all register contents, 
control blocks, etc. are saved) and control is passed to an interrupt service routine that branches to 
appropriate software for handling the interrupt. Upon completion of interrupt servicing, the state of the 
machine is restored and normal processing flow continuous. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24.1  Interrupts  
 
In many situations, interrupt servicing for one event may itself be interrupted by another, higher-priority 
event. Interrupt priority levels (Figure 24.2) may be established. If a lower-priority process is accidentally 
allowed to interrupt a higher-priority one, it may be difficult t restart the processes in the right order and 
an endless loop may result. 
 
To handle interrupts and still meet the system time constraints, many real-time operating systems make 
dynamic calculations to determine whether the system goals can be met. These dynamic calculations are 
based on the average frequency of occurrence of events, the amount of time it takes to service them( if they 
can be serviced), and the routines that can interrupt them and temporarily prevent their servicing. 
 
If the dynamic calculations show that it is impossible to handle the events that can occur in the system and 
still meet the time constraints, the system must decide on a plan of action. One possible approach involves 
buffering the data so that it can be processed quickly when the system is ready. 
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Figure 24.2  An example of interupt priority levels 
 
Real-Time Data Bases 
 
Like many data processing systems, real-time systems often are coupled with a  database management 
function. However, distributed databases would seem to be a preferred approach in real-time systems 
because multitasking is commonplace and data are often processed in parallel. If the database is 
distributed, individual tasks can access their data faster and more reliably and with fewer bottlenecks than 
with a centralized database. The use of a distributed database for real-time applications divides 
input/output “traffic” and shortens queues of tasks waiting for access to a database. Moreover, a failure of 
one database will rarely cause the failure of the entire system, if redundancy is built in. 
 
The performance efficiencies achieved through the use of a distributed database must be weighed against 
potential problems associated with data partitioning and replication. Although data redundancy improves 
response time by providing multiple information sources, replication requirements for distributed files 
also produce logistical and overhead problems, since all the files copies must be updated. In addition, the  
use of distributed databases introduces the problem of concurrency control  involves  synchronizing the 
database  so that all copies  have the correct, identical information  free for access. 
 
The conventional approach to concurrency control is  based on what are known as locking and time 
stamps.  At regular intervals, the following tasks are initiated: (1) tha database is  “locked” so that 
concurrency control is assured; no I/O is permitted; (2) updating occurs as required; (3) the database is 
unlocked; (4) files are validated to ensure that all updates have been correctly made; (5) the completed 
update is acknowledged. All locking tasks are monitored by a  master clock (i.e., time stamps). The delays 
involved in these procedures, as well as the problems of avoiding inconistent updates and deadlock, 
militate against the widespread use of distributed databases. 
 
Some techniques, however, have been developed to speed updating and to solve the concurrency 
problem. One of these, called the exclusive-writer protocol maintains the consistency of replicated files by 
allowing only a single, exclusive writing task to update a file. It therefore eliminates the high overhead of 
locking or time stamp procedures. 
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Real-Time Operating Systems 
 
Some real-time operating systems (RTOS) are applicable to a broad range of system configurations, while 
others are geared to a particular board or even microprocessor, regardless of the surrounding electronic 
environment. RTOS achieve their capabilities through a combination of software features and 
(increasingly) a variety of micro-coded capabilities implemented in hardware. 
 
Today two broad classes of operating systems are used for real-time work; (1) dedicated RTOS designed 
exclusively for real-time applications and (2) general-purpose operating systems that have been enhanced 
to provide real-time capability. The use of a real-time executive makes real-time performance- faster and 
more efficiently than the general-purpose operating system. 
 
All operating systems must have a priority scheduling mechanism, but RTOS must provide a priority 
mechanism that allows high-priority interrupts to take precedence over less important ones. Moreover, 
because interrupts occur in response to asynchronous, nonrecurring events, they must be serviced without 
first taking time to swap in a program from disk storage. Consequently, to guarantee the required 
response time, a real-time operating system must have a mechanism for memory locking- that is locking at 
least some programs in main memory so that swapping overhead is avoided. 
 
To determine which kind of real-time operating system best matches an application, measures of RTOS 
quality can be defined and evaluated. Context switching time and interrupt latency determine interrupt 
handling capability, the most important aspect of a real-time system. Context switching time is the time 
the operating system takes to store the state of the computer and the contents of the registers so that it can 
return to a processing task after servicing the interrupt. 
 
Interrupt latency, the maximum time lag before the system gets around to switching a task, occurs because 
in an operating system there are often non-reentrant or critical processing paths that must be completed 
before an interrupt can be processed. 
 
The length of these paths (the  number of instructions) before the system can service an interrupt indicates 
the worst-case time lag. The worst case occurs if a high-priority  interrupts is generated immediately after 
the system enters a critical path between an interrupt and interrupt service. If the time is too long, the 
system may miss data that are unrecoverable. It is important that the designer know the time lag so that 
the system can compensate for it. 
 
Many operating systems perform  multitasking [WOO90] or concurrent processing, another major 
requirement for real-time systems. But to be viable for real-time operation, the system overhead must be 
low in terms of switching time and memory space used. 
 
Real-Time Languages 
 
Because of the special requirements for performance and reliability demanded of real-time systems, the 
choice of a programming language is important. Many general-purpose programming languages (e.g., C, 
Fortan, Modula-2) can be used effectively for real-time applications. However, a class of so-called “real-
time languages” (e.g., Ada, Jovial, HAL/S, Chill and others) is often used in specialized military and 
communications applications. 
 
A combination of characteristics makes a real-time language different from a general-purpose language. 
These include the multitasking capability, constructs to directly implement real-time functions and 
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modern programming features that help ensure program correctness. 
 
A programming language that directly supports multitasking is important because a real-time system 
must respond to asynchronous events. Although many RTOS provide multitasking capabilities, 
embedded real-time software often exists without an operating system. Instead, embedded applications 
are written in a language that  provides sufficient run-time support for real-time program execution. Run-
time support requires less memory than an operating system, and it can be tailored to an application, thus 
increasing performance. 
 
Task Synchronization and Communication 
 
A multitasking system must furnish a mechanism for the tasks to pass information to each other as well as 
to ensure their synchronization. For these functions, operating systems and languages with run-time 
support commonly use queuing semaphores, mailboxes or message systems. A semaphore enables 
concurrent tasks to be synchronized. It supplies synchronization and signaling but contain no information. 
Messages are similar to semaphores except that they carry the associated information. Mailboxes, on the 
other hand, do not signal information but instead contain it. 
 
Queuing semaphores are software primitives that help manage traffic. They provide a method of directing 
several queues – for example, queues of tasks waiting for resources, database access and devices as well as 
queues of the resources and devices. The semaphore coordinate(synchronize) the waiting tasks with 
whatever they are waiting for without letting tasks or resources interfere with each other. 
 
In a real-time system, semaphores are commonly used to implement and manage mailboxes. Mailboxes 
are temporary  storage places (also called a message pools or buffers) for message sent from one process to 
another. One process produces a piece of information, puts it in the mailbox and then signals a consuming 
process that there is a piece of information in the mailbox for it to use. 
 
Some approaches to real-time operating systems or run-time support systems view mailboxes as the most 
efficient way to implement communications between processes. Some real-time operating systems furnish 
a place to send and receive pointers to mailbox data. This eliminates the need to transfer all of the data – 
thus saving time and overhead. 
A third approach to communication and synchronization among processes is a message system. With a 
message system, one process sends a message to another. The latter is then automatically activated by the 
run-time support system or operating system to process the message. Such a system incurs overhead 
because it transfers the actual information, but it provides greater flexibility and ease of use. 
 

24.3 Short Summary 
 

 The design of real time software encompasses all aspects of conventional software design while 
introducing a new set of  design criteria and concerns.  Because real time software must respond to 
real world events in a rime frame dictated by those events, all classes of design become more 
complex. 

 
 It is difficult, and often impractical, to divorce software design from larger system oriented issues.  

Because real time software is either clock or event driven, the designer must consider function and 
performance of hardware and software.   
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 Interrupt processing and data transfer, rate distributed databases and operating systems, specialized 
programming languages and synchronization methods are just some of the concerns of the real time 
system. 

 
 The  analysis of real time systems encompasses both mathematical modeling and simulation.  

Queuing and network models enable the system engineer to assess overall response time, processing 
rate and other timing and sizing issues.  Formal analysis tools provide a mechanism for real time 
system simulation. 

 
24.4 Brain Storm 

 
1. Discuss about Real Time System ? 

2. What is Real Time Database ? 

3. Short Note on Task Synchronization Communication ? 
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25.1 Snap Shot 
 
In this lecture we are going to learn about Analysis and Simulation of RealTime and Systems and 
RealTime Design. 
 

25.2 Analysis and Simulation of Real-Time Systems 
 
In the preceding section, we discussed a set of dynamic attributes that cannot be divorced from the 
functional requirements of a real-time system: 
 
• Interrupt handling and context switching 
• Response time 
• Data transfer rate and throughput 
• Resource allocation and priority handling 
• Task synchronization and intertask communication 
 
Each of these performance attributes can be specified, but it is extremely difficult to verify whether system 
elements will achieve desired response, system resources will be sufficient to satisfy computational 
requirements or processing algorithms will execute with sufficient speed. 
 
The analysis of real-time systems requires modeling and simulation that enables the system engineer to 
assess “timing and sizing” issues. Although a number of analysis techniques have been proposed in the 
literature (e.g., [LIU90], [WIL90] and [ZUC89]), it is fair to state that analytical approaches for the analysis 
and design of real-time systems are still in their early stages of development. 
 
Mathematical Tools for Real-Time System Analysis 
 
A set of mathematical tools that enable the system engineer to model real-time system elements and assess 
timing and sizing issues has been proposed by Thomas McCabe [MCC85]. Based loosely on data flow 
analysis techniques, McCabe’s approach enables the analyst to model both hardware and software 
elements of a real-time system; represent control in a probabilistic manner; and apply network analysis, 
queuing and graph theory and a Markovian mathematical model [GRO85] to derive system timing and 
resource sizing. Unfortunately the mathematics involved is beyond the scope of this book, making a 
detailed explication of McCabe’s work difficult. However, an overview of the technique will provide a 
worthwhile view of an analytical approach to the engineering of real-time systems. 
 
McCabe’s real-time analysis technique is predicated on a data flow model of the real-time system. 
However, rather than using a DFD in the conventional manner, McCabe [MCC85] contends that the 
transforms of a DFD can be represented as process states of a Markov chain and the data flows themselves 
represent transitions between the process states. The analyst can assign transitional probabilities to each 
data flow path. As shown in figure 25.1 a value 0<pij< 1.0 may be specified for each flow path, where pij 
represents the probability that flow will occur between process i and process j. The processes correspond 
to information transforms (bubbles) in the DFD. 
 
Each process in the DFD-like  model can be given a “unit cost” that represents the estimated (or actual) 
execution time required to perform its function and an “entrance value” that depicts the number of system 
interrupts corresponding to the process. The model is then analyzed using a set of mathematical tools that 
compute (1) the expected number of visits to a process, (2) the time spent in the system when processing 
begins at a specific process and (3) the total time spent in the system. 
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Figure 25.1  DFDs as  a queuing network model 
 
To illustrate the McCabe technique on a realistic example, we consider a DFD for an electronic counter 
measures system shown in figure 25.2. The data flow diagram takes the standard form, but data flow 
identification has been replaced by pij.  The values lambda(λi) correspond to the arrival rate (arrivals per 
second)  at each process. Depending on the type of queue encountered, the  analyst must determine 
statistical information such as the mean service rate ( mean run time per process), variance of service rate, 
variance of arrival rate, and so forth. 
 
The arrival rates for each process are determined using the flow path probabilities, pij and the arrival rate 
into the system, λin. a set of flow balance equations are derived and solved simultaneously to compute the 
flow through each process. For the example the following flow balance equations result [MCC85]: 
  

 λ4  = p64λ6 

  λ5  = p25λ2  = λ3 

  λ6  = λ5 

  λ7  = p67λ6 

 
for the pij shown and an arrival rate, λin  = 5 arrivals per second, the above equations can be solved 
[MCC85] to yield: 
  λ1   = 8.3 
  λ2  = 5.8 
  λ3  = 5.4 
  λ5  = 8.3 
  λ6  = 8.3 
  λ7  = 5.0 
 
Once the arrival rates have been completed, standard queuing theory can be used to compute system 
timing. Each subsystem ( a queue, Q and a server, S may be evaluated using formulas that correspond to 
the queue type. For (m/m/1) queues [KLI75]: 
 
 utilization: ρ = λ/μ 
 expected queue length : Nq = ρ2 (1 – p) 
 expected number in subsystem : Ns  = ρ1 (1 – p) 
 expected time in queue Tq = λ/μ(μ - λ ) 
 expected time in subsystem:  Ts = 1/(μ - λ ) 
 
 
  λ1 = λin  + λ4 

  λ2  = p12λ1 

  λ3  = p13λ1  + p23λ2 
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where μ is completion rate (completions/sec). Applying standard  queuing network reduction rules the 
original network derived from the data flow diagram can be simplified by applying the steps shown in 
figure 25.4. The total time spent in the system is 2.37 seconds. 
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Obviously, the accuracy of McCabe’s analysis approach is only as good as estimates for flow probability, 
arrival rate and completion rate. However, significant benefit can be achieved by taking a more analytical 
view of real-time systems during analysis. To quote McCabe [MCC85]: 
 
By changing such variables as arrival rates, interrupt rates, splitting probabilities, priority structure, queue 
discipline, configurations, requirements, physical implementation and variances we can easily show the 
program manager what affect it will have on the system at hand. These iterative methodologies are 
necessary to fill a void in real-time specification modeling. 
 
Simulation and Modeling Techniques 
 
Mathematical analysis of a real-time system represents one approach that can  be used to understand 
projected performance. However, a growing number of real-time software developers use simulation and 
modeling tools that not only analyze a system’s performance, but also enable the software engineer to 
build a prototype, execute it and thereby gain an understanding of a system’s behavior. 
 
The overall rationale behind simulation and modeling for real-time systems is discussed [ILO89] by i-
Logix ( a company that develops tools for systems engineers): 
 

(a) Series rule -  The arrivals are served by the subsystem in series. 
Tx = Time in system (delay) 

 
 
 
 
 

(b) Parallel rule -  The arrivals are served by the subsystem in parallel. 
 
 
 
 
 
 
 

 
p1T1 + p2T2 
      p1+p2 
p1 = probability of entering the server 1 system. 
P2 = probability of enterning the server 2 system 

© Looping rule – A server with delay T T λ(μ) and a  feedback loop with looping probability P 
 
 
 
 
 
 
 

λe=λin 
         (1-p) 

Figure 25.3 Queing network reduction rules 
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The understanding of a system’s behavior in its environment over time is most often addressed in the 
design, implementation and testing phases of a project, through iterative trial and error. The Statemate  [ a 
system engineering tool for simulation and modeling] approach provides an alternative to this costly 
process. It allows you to build a comprehensive system model that is accurate enough to be relied on a 
and clear enough to be useful. The model addresses the usual functional and flow issues, but also covers 
the dynamic, behavioral aspects of a system. This model can then be tested with the Statemate analysis 
and retrieval tools, which provide extensive mechanisms for inspecting and debugging the specification 
and retrieving information form it. By testing the implementation model, the system engineer can see how 
the system as specified would behave if implemented. 
 
The i-Logix approach [HAR90] makes use of notation that combines three different views of a system: the 
activity-chart, the module-chart  and the state - chart. In the paragraphs that follows the i-Logix approach 
to real-time system simulation and modeling is described. 
 
 
 
 
 
 
 
 

Step 1. Further abstracted queuing network 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 2. Equivalent queuing network showing all possible paths through the network 
 
 

Step 3. Final reduction 
Figure 25.4 Simplifying the queing network 
 

The Conceptual View 
 

Functional issues are treated using activities that represent the processing capabilities of the system. 
Dealing with a customer’s confirmation request in an airline reservation system is an example of an 
activity, as is updating the aircraft’s position in an avionics system. Activities can be nested, forming a 
hierarchy that constitutes a functional decomposition of the system. Items of information such as the 
distance to a target or a customer’s name, will typically flow between activities and might also be kept in 
data stores. This functional view of a system is captured with activity-charts which are similar to 
conventional data flow diagrams. 
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Dynamic behavioral issues, commonly referred to as control aspects, are treated using statecharts, a 
notation developed by Harel and his colleagues [HAR88], [HAR92]. Here states can be nested and linked 
in a number of ways to represent sequential or concurrent behavior. An avionics mission computer, for 
example, could be in one of three states: air-to-air, air-to-ground, or navigation. At the same time it must 
be in the state of either automatic or manual flight control. Transitions between states are typically 
triggered by events, which may be qualified by conditions. Flipping a certain  switch on the throttle, for 
example, is an event that will cause a transition from the navigate stat to the air-to ground state, but only 
on condition that the aircraft has air-to-ground ammunition available. As a simple example consider the 
digital watch shown in figure 25.5. The Statechart for the watch is shown in figure 25.6. 
 
These two views of a system are integrated in the following way. Associated with each level of an activity-
chart, there will usually be a statechart, called a control activity, whose role is to control the activities and 
data flows of that level[this is similar in some ways to the relationship between flow models and CSPEC 
described in chapter 12]. A statechart is able to exercise control over the activities. For example it can 
instruct activities to start and stop and to suspend and resume their work. It is able to change the values of 
variables and thus to influence the processing carried out by the activities. It is also able to send signals to 
other activities and thus cause them to change their own behavior. In addition to being able to generate 
actions, a controlling statechart is able to sense such actions being carried out by other statecharts. For 
example, if one statechart starts an  activity or increments the value of variable an other can sense that  
event and use it, say to trigger a transition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25.5 Digital watch prototype (courtesy I-Logix) 
 
It is important to realize that activity-charts and statecharts are strongly linked, but they are not different 
representations of the same thing. Activity-charts on their own are incomplete as a model of the system, 
since they do not address behavior. Statecharts are also incomplete, since without activities they have 
nothing to control. Together, a detailed activity-chart and its controlling statecharts provide the 
conceptual model. The activity-chart is the backbone of the model; its decomposition of the capabilities of 
the system is the dominant hierarchy of the specification, and its controlling statecharts are the driving 
force behind the system’s behavior. 
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The Physical View 
 
A specification that uses activity-charts and statecharts in the form of a conceptual model is an excellent 
foundation, but it is not a real system. What is missing is a means for describing the system from a 
physical(implementation) perspective and a means to be sure that the system is implemented in a way 
that is true to that specification. An important part of this is describing the physical decomposition of the 
system and its relationship to the conceptual model. 
 
The physical aspects are treated in Statemate using the language of module-charts. The terms “physical” 
and  “module” are used generically to denote components of a system, whether hardware, software or 
hybrid. Like activities in an activity-chart, modules are arranged in a hierarchy to show the decomposition 
of a system into its components and subcomponents. Modules are connected by flow lines, which one can 
think of as being the carriers of information between modules. 
 
Analysis and Simulation 
 
Once we have constructed a conceptual model, consisting of an activity-chart and its controlling 
statecharts, it can be thoroughly analyzed and tested. The model might describe the entire system, down 
to the lowest level of detail, or it might be only a partial specification. 
 
We must first be sure that the model is syntactically correct. This gives rise to many relatively 
straightforward tests: for example, that the various charts are not blatantly incomplete e.g., missing labels 
or names, dangling arrows); that the definitions of nongraphical elements, such as events and conditions, 
employ legal operations only, and so on. Syntax checking also involves more subtle tests, such as the 
correctness of inputs and outputs. A example of this is a test for elements that are used in the statechart 
but are neither input nor affected internally such as a power-on event that is meant to cause a transition in 
the statechart but is not defined in the activity-chart as an input. All of these are usually referred to as 
consistency and completeness tests, and most of them are analogous to the checking carried out by a 
compiler prior to the actual compilation of a programming language. 
 
Running Scenarios 
 
A syntactically correct model accurately describes some system. However, it might not be the system we 
had in mind. In fact, the system described might be seriously flawed – syntactic correctness does not 
guarantee correctness of function or behavior. The real objective of analyzing the model is to find out 
whether it truly describes the system that we want. The analysis should enable us to learn more about the 
model that has been constructed, to examine how a system based on it would behave, and to verify that it 
indeed meets expectations. This requires a modeling language with more than a formal syntax. It requires 
that the system used to create the model recognize formal semantics as well. 
 
If the model is based on a formal semantics, the system engineer can execute the model. The engineer can 
create and run a scenario that allows him to “press buttons” and observe the behavior of the model before 
the system is actually build. For example to exercise a model of an automated teller machine (ATM) the 
following steps occur: (1) a conceptual model is created; (2) the engineer plays the role of the customer and 
the bank computer, generating events such as insertion of a bank card, buttons being pressed and new 
balance information arriving; (3) the reaction of the system to these events is  monitored and (4) 
inconsistencies in behavior are noted ; (5) the conceptual model is modified to reflect proper behavior and 
(6) iteration occurs until the system that is desired evolves. 
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The system engineer runs scenarios and views the system’s response graphically. “active” elements of the 
model (e.g., states that the system is in at the moment and activities that are active) are highlighted 
graphically and the dynamic execution results in an animated representation of the model. The execution 
of a scenario simulates the system running in real time and keeps track of time-dependent information. At 
any point during the execution, the engineer can ask to see the status of any other, nongraphical, element 
such as the value of a variable or a condition. 
 
Programming Simulations 
 
A scenario enables the system engineer to exercise the model interactively. At times, however more 
extensive simulation may be desirable. Performance under random conditions in both typical and a 
typical situations may need to be assessed. For situations in which a more extensive simulation of a real-
time model is desired, Simulation Control Language (SCL) enables the engineer to retain general control 
over how the executions proceed, but at the same time exploits the power of the tool to take over many of 
the details. 
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One of the simplest things that can be done with SCL is to read lists of events from a batch file. This means 
that lengthy scenarios or parts of them can be prepared in advance and executed automatically. These can 
be observed by the system engineer. Alternatively, the system engineer can program with SCL to set break 
points and to monitor certain variables, states or conditions. For example, running a simulation of an 
avionics system, the engineer might ask the SCL program to stop whenever the radar locks on target and 
switch to interactive mode. Once “lock on” is recognized, the engineer takes over interactively so that this 
state can be examined in more detail. 
 
The use of scenarios and simulations also enables the engineer to gather meaningful statistics about the 
operation of the system that is to be built. For example we might want to know how many times, in a 
typical flight of the aircraft, the radar loses a locked-on target. Since it might be difficult for the engineer to 
put together a single, all-encompassing flight scenario, a  programmed simulation can be developed using 
accumulated results form other scenarios to obtain average- case statistics. A simulation control program 
generates random (say, seat ejection in a fighter aircraft) can be assigned very low probabilities while 
others are assigned higher probabilities, and the random selection of events thus becomes realistic. In 
order to be able to gather the desire statistics, we insert appropriate break points in the SCL program. 
  
Automatic Translation into Code 
 
Once the system model has been built, it can translated I nits entirety into executable code using a 
prototyping function. Activity-charts and their controlling statecharts can be translated into a high-level 
programming language, such as Ada or C. Today, the primary use of the resulting  code is to observe a 
system perform under circumstances that are as close to the real world as possible. For example the 
prototype code can be executed in a full-fledged simulator of the target environment or in the final 
environment itself. The code produced by such CASE tools should be considered to be “prototypical”. It is 
not production or final code. Consequently it might not always reflect accurate real-time performance of 
the intended system. Nevertheless, it is useful for testing the system’s performance in close to real 
circumstances. 
 

25.3 Real-Time Design 
 
The design of real-time software must incorporate all of the fundamental concepts and principles 
associated with high-quality software. In addition, real-time software poses a set of unique problems for 
the designer. 
 
• Representation of interrupts and context switching 
• Concurrency as manifested by multitasking and multiprocessing 
• Intertask communication and synchronization 
• Wide variations in data and communication rates 
• Representation of timing constraints 
• Asynchronous processing 
• Necessary and unavoidable coupling with operating systems, hardware and other external system 

elements 
 
It is worthwhile to address a set of specialized design principles that are particularly relevant during the 
design of real-time systems. Kurki-Suono [ KUR93] discuss the design model for real-time software; 
 
All reasoning, whether formal or intuitive, is performed with some abstraction. Therefore it is important 
to understand which kinds of properties are expressible in the abstraction in question. In connection with 
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reactive systems, this is emphasized by the more stringent need for formal methods, and by the fact that 
no general consensus has been reached about the models that should be used. Rigorous formalisms for 
reactive systems range forma process algebras and temporal logics to concrete state-based models and 
Petri nets, and different schools keep arguing about their relative merits. 
 
He then defines a number of modeling principles that should be considered in the design of real-time 
software [KUR93]: 
 
Explicit atomicity. It is necessary to define “atomic actions” explicitly as part of the real-time design 
model. An atomic action or event is a well-constrained and limited function that can be executed by a 
single task or executed concurrently by several tasks. An atomic action is invoked only by those tasks 
(“participants”) that require it, and the results of its execution affect only those participants; no other parts 
of the system are affected. 
 
Interleaving Although processing can be concurrent, the history of some computation should be 
characterized in a way that can be obtained by a linear sequence of actions. Starting with an initial state, a 
first action is enabled and executed. As a result of this action the stat is modified and a second action 
occurs. Because several actions can occur in any given state, different results(histories) can be spawned 
from the same initial state. “This non determinism is essential in interleaved modeling of concurrency” 
[KUR93]. 
Nonterminating histories and fairness.   The  processing history of a reactive system is assumed to be 
infinite.  By this we mean that processing continues indefinitely or “stutters” until some event causes it to 
continue processing.  Fairness requirements prevent a system from stopping at some arbitrary  point. 
 
Closed system principle.  A design model of a real time system should encompass the software and the 
environment in which the software resides. “ Actions can therefore be partitioned into those for which the 
system itself s responsible, and to those that are assumed to be executed by the environment” 
 
Structuring of state.    A real-time system can be modeled as a set of objects, each of which has a state of 
its own. 
 
 The software engineer should consider each of the concepts noted above as the design of real time system 
evolves. 
 
Over the past two decades, a number of real time software design methods have been proposed to grapple 
with some or all of the problems noted above.  Some approaches to real time design extend the design 
methods discussed in chapter 14 and 21 (e.g. data flow [WAR85], [HAT87] data structure [JAC83]; or 
object -oriented [LEL90] methods. Others introduce an entirely separate approach using finite state 
machine models or message passing systems. Petrinets, or a specialized language as a basis for design.  A 
comprehensive discussion of  software design for real time systems is beyond the scope of this book.  For 
further details, the reader should refer to [LEV90],[SHU92],[SEL 94} and [GOM 95]. 
 

25.4 Short Summary 
 

 Software design for real time systems can be predicated on a conventional design methodology that 
extends data flow oriented  or object oriented design by providing a notation and approach that 
addresses real-time  system characteristics.  Alternatively, design methods that make use of unique 
notation or specialized languages can also be applied. 
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 Software design for real time systems remains a challenge.  Progress has been made; methods do 
exist, but a realistic assessment of the state of the art suggests much remains to be done. 

 

25.5 Brain Storm 
 

1. Give a brief note on Analysis and Simulation of Real – Time systems ? 
2. Expalain briefly about Real – Time Design ? 

 

  Best of Luck  
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MS3.1 Software Engineering  - Concepts and 
 Implementation 

 
Syllabus 
 
Lecture   1   
 Software characteristics – Software Components – Software Applications. 
 
Lecture   2   
 Software Engineering – A layered technology – Software process – Software process     

models – the linear sequential model – Evolutionary software process models – the 
incremental model. 

 
Lecture 3  
 Project management concepts – the management spectrum – people  ,problem, 

process. 
 
Lecture 4  
 Software project planning – project planning objectives – software scope -  resources  

- software project estimations. 
 
Lecture 5  
 Decomposition techniques – empirical  estimation models – the make buy decision – 

automated estimation tools. 
 
Lecture 6  
 Risk management – reactive Vs proactive risk strategies – software risks -  risk 

identification – risk projection – risk mitigation and management – safety risks and 
hazards. 

 
Lecture 7  
 Project scheduling and tracking  - Basic concepts-  the relationship between people 

and effort – defining a task set for the software project. 
 
Lecture 8  
 Selecting software engineering tasks – refinement of major tasks – defining a task 

network – scheduling – the  project plan. 
 
Lecture 9  
 Quality concepts -  the quality movement – software quality assurance – software 

reviews  
 
Lecture 10   
 Formal technical  reviews – formal approaches to SQA - the SQA  plan – the ISO 

9000 quality standards. 
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Lecture 11  
 Software configuration management – the SCM process – identification of objects in 

the software configuration – version control – change control – configuration audit – 
status reporting – SCM standards. 

 
Lecture 12   
 System engineering - Computer based systems – the system engineering hierarchy -  

information engineering. 
 
Lecture 13  
 Information strategy planning – business area analysis. 
 
Lecture 14   
 Product engineering – modeling the system architecture – system modeling and 

simulation – system specification. 
 
Lecture 15   
 Analysis concepts and principles - Requirements analysis – communication 

techniques – analysis principles. 
 
Lecture 16  
 Software prototyping – specification – specification review. 
 
Lecture 17   
 Analysis modeling - The elements of the analysis model – data modeling – functional 

modeling and information flow. 
 
Lecture 18  
 Behavioral modeling –  the mechanics of structured analysis  
 
Lecture 19  
 The data dictionary -  an overview of other classical analysis methods. 
 
Lecture 20   
 Design concepts  and principles - Software design and software engineering – the 

design process – design principles – design concepts.  
 
Lecture 21  
 Effective modular design – design heuristics for effective modularity – the design 

model – design documentation. 
 
Lecture 22,23   
 Design methods - Data design – architectural design – the architectural design process 

– transform mapping – transaction mapping – design postprocessing. 
 



Software Engineering – Concepts & Implementation 
 

Centre for Information Technology and Engineering, Manonmaniam Sundaranar University 
308 

Lecture 24,25  
 Architectural design optimization – interface design – human computer interface 

design – interface design guidelines – procedural design. 
 
Lecture 26  

Design for real time  systems - System considerations – real time systems . 
  
Lecture 27  

Analysis and simulation of real time systems – real time design. 
 
Lecture 28   
 Software testing methods - Software testing fundamentals – test case design – white 

box testing – basis path testing –  
 
Lecture 29  

Control structure testing - testing for specialized environments. 
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